Santosh R D'mello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6057467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. International Journal of Molecular Sciences, 2021, 22, 5911.	4.1	36
2	MECP2 and the biology of MECP2 duplication syndrome. Journal of Neurochemistry, 2021, 159, 29-60.	3.9	19
3	Histone deacetylases 1, 2 and 3 in nervous system development. Current Opinion in Pharmacology, 2020, 50, 74-81.	3.5	16
4	Overdosing on iron: Elevated iron and degenerative brain disorders. Experimental Biology and Medicine, 2020, 245, 1444-1473.	2.4	26
5	Histone deacetylase-3: Friend and foe of the brain. Experimental Biology and Medicine, 2020, 245, 1130-1141.	2.4	8
6	Catalytic-independent neuroprotection by SIRT1 is mediated through interaction with HDAC1. PLoS ONE, 2019, 14, e0215208.	2.5	4
7	Regulation of Central Nervous System Development by Class I Histone Deacetylases. Developmental Neuroscience, 2019, 41, 149-165.	2.0	17
8	The Bdnf and Npas4 genes are targets of HDAC3-mediated transcriptional repression. BMC Neuroscience, 2019, 20, 65.	1.9	10
9	Proteomic analysis identifies NPTX1 and HIP1R as potential targets of histone deacetylase-3-mediated neurodegeneration. Experimental Biology and Medicine, 2018, 243, 627-638.	2.4	14
10	Elevated MeCP2 in Mice Causes Neurodegeneration Involving Tau Dysregulation and Excitotoxicity: Implications for the Understanding and Treatment of MeCP2 Triplication Syndrome. Molecular Neurobiology, 2018, 55, 9057-9074.	4.0	17
11	Complex neuroprotective and neurotoxic effects of histone deacetylases. Journal of Neurochemistry, 2018, 145, 96-110.	3.9	55
12	Neuroprotection by Heat Shock Factor-1 (HSF1) and Trimerization-Deficient Mutant Identifies Novel Alterations in Gene Expression. Scientific Reports, 2018, 8, 17255.	3.3	16
13	Reduced Expression of Foxp1 as a Contributing Factor in Huntington's Disease. Journal of Neuroscience, 2017, 37, 6575-6587.	3.6	18
14	Regulation of Neuronal Survival by Nucleophosmin 1 (NPM1) Is Dependent on Its Expression Level, Subcellular Localization, and Oligomerization Status. Journal of Biological Chemistry, 2016, 291, 20787-20797.	3.4	18
15	Cell and Context-Dependent Effects of the Heat Shock Protein DNAJB6 on Neuronal Survival. Molecular Neurobiology, 2016, 53, 5628-5639.	4.0	6
16	c-Fos Protects Neurons Through a Noncanonical Mechanism Involving HDAC3 Interaction: Identification of a 21-Amino Acid Fragment with Neuroprotective Activity. Molecular Neurobiology, 2016, 53, 1165-1180.	4.0	20
17	Insights into the regulation of neuronal viability by nucleophosmin/B23. Experimental Biology and Medicine, 2015, 240, 774-786.	2.4	48
18	Featured Article: Transcriptome profiling of expression changes during neuronal death by RNA-Seq. Experimental Biology and Medicine, 2015, 240, 242-251.	2.4	7

#	Article	IF	CITATIONS
19	Vagal nerve stimulation blocks interleukin 6-dependent synaptic hyperexcitability induced by lipopolysaccharide-induced acute stress in the rodent prefrontal cortex. Brain, Behavior, and Immunity, 2015, 43, 149-158.	4.1	34
20	Histone Deacetylase 3 Is Necessary for Proper Brain Development. Journal of Biological Chemistry, 2014, 289, 34569-34582.	3.4	57
21	JAZ (Znf346), a SIRT1-interacting Protein, Protects Neurons by Stimulating p21 (WAF/CIP1) Protein Expression. Journal of Biological Chemistry, 2014, 289, 35409-35420.	3.4	14
22	HSF1 Protects Neurons through a Novel Trimerization- and HSP-Independent Mechanism. Journal of Neuroscience, 2014, 34, 1599-1612.	3.6	53
23	Disassociation of Histone Deacetylase-3 from Normal Huntingtin Underlies Mutant Huntingtin Neurotoxicity. Journal of Neuroscience, 2013, 33, 11833-11838.	3.6	54
24	Epigenetics, Autism Spectrum, and Neurodevelopmental Disorders. Neurotherapeutics, 2013, 10, 742-756.	4.4	100
25	Conditional deletion of histone deacetylaseâ€4 in the central nervous system has no major effect on brain architecture or neuronal viability. Journal of Neuroscience Research, 2013, 91, 407-415.	2.9	27
26	Histone Deacetylase-1 (HDAC1) Is a Molecular Switch between Neuronal Survival and Death. Journal of Biological Chemistry, 2012, 287, 35444-35453.	3.4	115
27	Transducin-like Enhancer of Split-1 (TLE1) Combines with Forkhead Box Protein G1 (FoxG1) to Promote Neuronal Survival. Journal of Biological Chemistry, 2012, 287, 14749-14759.	3.4	23
28	Isoform-Specific Toxicity of Mecp2 in Postmitotic Neurons: Suppression of Neurotoxicity by FoxG1. Journal of Neuroscience, 2012, 32, 2846-2855.	3.6	71
29	The Stress-Induced Cytokine Interleukin-6 Decreases the Inhibition/Excitation Ratio in the Rat Temporal Cortex via Trans-Signaling. Biological Psychiatry, 2012, 71, 574-582.	1.3	73
30	Neuroprotection by Histone Deacetylase-7 (HDAC7) Occurs by Inhibition of c-jun Expression through a Deacetylase-independent Mechanism. Journal of Biological Chemistry, 2011, 286, 4819-4828.	3.4	69
31	FoxG1 Promotes the Survival of Postmitotic Neurons. Journal of Neuroscience, 2011, 31, 402-413.	3.6	77
32	Selective Toxicity by HDAC3 in Neurons: Regulation by Akt and GSK3β. Journal of Neuroscience, 2011, 31, 1746-1751.	3.6	146
33	Identification of novel 1,4â€benzoxazine compounds that are protective in tissue culture and in vivo models of neurodegeneration. Journal of Neuroscience Research, 2010, 88, 1970-1984.	2.9	32
34	Neuronâ€selective toxicity of tau peptide in a cell culture model of neurodegenerative tauopathy: Essential role for aggregation in neurotoxicity. Journal of Neuroscience Research, 2010, 88, 3399-3413.	2.9	27
35	Induction of neuronal cell death by paraneoplastic Ma1 antigen. Journal of Neuroscience Research, 2010, 88, 3508-3519.	2.9	29
36	Synthesis of 2-Benzylidene and 2-Hetarylmethyl Derivatives of 2 <i>H</i> -1,4-Benzoxazin-3-(4 <i>H</i>)-ones as Neuroprotecting Agents. Synthetic Communications, 2010, 40, 2364-2376.	2.1	6

#	Article	IF	CITATIONS
37	Histone deacetylases as targets for the treatment of human neurodegenerative diseases. Drug News and Perspectives, 2009, 22, 513-24.	1.5	26
38	NF-κB is involved in the survival of cerebellar granule neurons: association of IκBβ phosphorylation with cell survival. Journal of Neurochemistry, 2008, 77, 351-351.	3.9	6
39	Histone deacetylaseâ€related protein inhibits AESâ€mediated neuronal cell death by direct interaction. Journal of Neuroscience Research, 2008, 86, 2423-2431.	2.9	42
40	HDAC4 inhibits cellâ€cycle progression and protects neurons from cell death. Developmental Neurobiology, 2008, 68, 1076-1092.	3.0	136
41	Inhibition of ATF $\hat{a}\in 3$ expression by B $\hat{a}\in R$ af mediates the neuroprotective action of GW5074. Journal of Neurochemistry, 2008, 105, 1300-1312.	3.9	20
42	A chemical compound commonly used to inhibit PKR, {8â€(imidazolâ€4â€ylmethylene)â€6Hâ€azolidino[5,4â€g] benzothiazolâ€7â€one}, protects neurons by inhibiting cyclinâ€dependent kinase. European Journal of Neuroscience, 2008, 28, 2003-2016.	2.6	37
43	Synthesis and Structure-Activity Relationship Studies of 3-Substituted Indolin-2-ones as Effective Neuroprotective Agents. Experimental Biology and Medicine, 2008, 233, 1395-1402.	2.4	22
44	Polydactyly in Mice Lacking HDAC9/HDRP. Experimental Biology and Medicine, 2008, 233, 980-988.	2.4	24
45	Opposing Effects of Sirtuins on Neuronal Survival: SIRT1-Mediated Neuroprotection Is Independent of Its Deacetylase Activity. PLoS ONE, 2008, 3, e4090.	2.5	161
46	Class IIA HDACs in the regulation of neurodegeneration. Frontiers in Bioscience - Landmark, 2008, 13, 1072.	3.0	38
47	Histone deacetylases: Focus on the nervous system. Cellular and Molecular Life Sciences, 2007, 64, 2258-2269.	5.4	83
48	Neuroprotection by Histone Deacetylase-Related Protein. Molecular and Cellular Biology, 2006, 26, 3550-3564.	2.3	100
49	Phosphorylation of lκB-β Is Necessary for Neuronal Survival. Journal of Biological Chemistry, 2006, 281, 1506-1515.	3.4	7
50	Inhibition of neuronal apoptosis by the cyclinâ€dependent kinase inhibitor GW8510: Identification of 3′ substituted indolones as a scaffold for the development of neuroprotective drugs. Journal of Neurochemistry, 2005, 93, 538-548.	3.9	49
51	P21-activated kinase-1 is necessary for depolarization-mediated neuronal survival. Journal of Neuroscience Research, 2005, 79, 809-815.	2.9	22
52	Treating Neurodegenerative Conditions Through the Understanding of Neuronal Apoptosis. CNS and Neurological Disorders, 2005, 4, 3-23.	4.3	22
53	Brain chemotherapy from the bench to the clinic: targeting neuronal survival with small molecule inhibitors of apoptosis. Frontiers in Bioscience - Landmark, 2005, 10, 552.	3.0	3
54	Inhibition of GSK3β is a common event in neuroprotection by different survival factors. Molecular Brain Research, 2005, 137, 193-201.	2.3	127

#	Article	IF	CITATIONS
55	Editorial [Hot Topic: Neurodegenerative Diseases (Guest Editor: Santosh R. DMello)]. CNS and Neurological Disorders, 2005, 4, i-i.	4.3	0
56	Chemotherapy for the Brain: The Antitumor Antibiotic Mithramycin Prolongs Survival in a Mouse Model of Huntington's Disease. Journal of Neuroscience, 2004, 24, 10335-10342.	3.6	181
57	The câ€Raf inhibitor GW5074 provides neuroprotection <i>in vitro</i> and in an animal model of neurodegeneration through a MEKâ€ERK and Aktâ€independent mechanism. Journal of Neurochemistry, 2004, 90, 595-608.	3.9	94
58	Survival of cultured cerebellar granule neurons can be maintained by Akt-dependent and Akt-independent signaling pathways. Molecular Brain Research, 2004, 127, 140-145.	2.3	12
59	NF-κB stimulates Akt phosphorylation and gene expression by distinct signaling mechanisms. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2003, 1630, 35-40.	2.4	28
60	Apoptosis in cerebellar granule neurons is associated with reduced interaction between CREB-binding protein and NF-κB. Journal of Neurochemistry, 2003, 84, 397-408.	3.9	37
61	Akt Is a Downstream Target of NF-lºB. Journal of Biological Chemistry, 2002, 277, 29674-29680.	3.4	173
62	Citron-Kinase, A Protein Essential to Cytokinesis in Neuronal Progenitors, Is Deleted in the <i>>Flathead</i> Mutant Rat. Journal of Neuroscience, 2002, 22, RC217-RC217.	3.6	60
63	Distinct phosphorylation patterns underlie Akt activation by different survival factors in neurons. Molecular Brain Research, 2001, 96, 157-162.	2.3	37
64	NF-κB is involved in the survival of cerebellar granule neurons: association of Iκβ phosphorylation with cell survival. Journal of Neurochemistry, 2001, 76, 1188-1198.	3.9	93
65	Aberrant apoptosis in the neurological mutant Flathead is associated with defective cytokinesis of neural progenitor cells. Developmental Brain Research, 2001, 130, 53-63.	1.7	9
66	NF-kappaB is involved in the survival of cerebellar granule neurons: association of IkappaBbeta phosphorylation with cell survival. CORRECTION. Journal of Neurochemistry, 2001, 77, 351-351.	3.9	1
67	Caspase-3 is required for apoptosis-associated DNA fragmentation but not for cell death in neurons deprived of potassium. , 2000, 59, 24-31.		88
68	TheFlatheadMutation Causes CNS-Specific Developmental Abnormalities and Apoptosis. Journal of Neuroscience, 2000, 20, 2295-2306.	3.6	36
69	Caspase-3 is required for apoptosis-associated DNA fragmentation but not for cell death in neurons deprived of potassium. Journal of Neuroscience Research, 2000, 59, 24-31.	2.9	28
70	Characterization of Seizures in the Flathead Rat: A New Genetic Model of Epilepsy in Early Postnatal Development. Epilepsia, 1999, 40, 394-400.	5.1	30
71	Decreased expression of the metabotropic glutamate receptor-4 gene is associated with neuronal apoptosis. Journal of Neuroscience Research, 1998, 53, 531-541.	2.9	45
72	A gene essential to brain growth and development maps to the distal arm of rat chromosome 12. Neuroscience Letters, 1998, 251, 5-8.	2.1	15

#	Article	IF	CITATIONS
73	6 Molecular Regulation of Neuronal Apoptosis. Current Topics in Developmental Biology, 1998, 39, 187-213.	2.2	56
74	A DEVDâ€Inhibited Caspase Other than CPP32 Is Involved in the Commitment of Cerebellar Granule Neurons to Apoptosis Induced by K ⁺ Deprivation. Journal of Neurochemistry, 1998, 70, 1809-1818.	3.9	71
75	Decreased expression of the metabotropic glutamate receptorâ€4 gene is associated with neuronal apoptosis. Journal of Neuroscience Research, 1998, 53, 531-541.	2.9	2
76	Insulin-Like Growth Factor and Potassium Depolarization Maintain Neuronal Survival by Distinct Pathways: Possible Involvement of PI 3-Kinase in IGF-1 Signaling. Journal of Neuroscience, 1997, 17, 1548-1560.	3.6	283
77	Opposing effects of thapsigargin on the survival of developing cerebellar granule neurons in culture. Brain Research, 1995, 676, 325-335.	2.2	40
78	Lithium Induces Apoptosis in Immature Cerebellar Granule Cells but Promotes Survival of Mature Neurons. Experimental Cell Research, 1994, 211, 332-338.	2.6	119
79	Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10989-10993.	7.1	862
80	SGP2, ubiquitin, 14K lectin and RP8 mRNAs are not induced in neuronal apoptosis. NeuroReport, 1993, 4, 355-358.	1.2	30
81	The human nerve growth factor gene: structure of the promoter region and expression in L929 fibroblasts. Molecular Brain Research, 1992, 15, 67-75.	2.3	33
82	Differential regulation of the nerve growth factor and brain-derived neurotrophic factor genes in L929 mouse fibroblasts. Journal of Neuroscience Research, 1992, 33, 519-526.	2.9	12
83	Structural and functional identification of regulatory regions and cis elements surrounding the nerve growth factor gene promoter. Molecular Brain Research, 1991, 11, 255-264.	2.3	68
84	Multiple Signalling Pathways Interact in the Regulation of Nerve Growth Factor Production in L929 Fibroblasts. Journal of Neurochemistry, 1991, 57, 1570-1576.	3.9	33
85	Induction of Nerve Growth Factor Gene Expression by 12-O-Tetradecanoyl Phorbol 13-Acetate. Journal of Neurochemistry, 1990, 55, 718-721.	3.9	40
86	Isolation and structural characterization of the bovine tyrosine hydroxylase gene. Journal of Neuroscience Research, 1989, 23, 31-40.	2.9	40
87	The complete nuleotide sequence and structure of the gene encoding bovine phenylethanolamine N-methyltransferase. Journal of Neuroscience Research, 1988, 19, 367-376.	2.9	40
88	Isolation and nucleotide sequence of a cDNA clone encoding bovine adrenal tyrosine hydroxylase: Comparative analysis of tyrosine hydroxylase gene products. Journal of Neuroscience Research, 1988, 19, 440-449.	2.9	53