
Toshitaka Kubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6057410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Exciton–Exciton Collisions in an Ultraflat Monolayer MoSe ₂ Prepared through Deterministic Flattening. ACS Nano, 2021, 15, 1370-1377.	14.6	9
2	Micrometer-scale WS ₂ atomic layers grown by alkali metal free gas-source chemical vapor deposition with H ₂ S and WF ₆ precursors. Japanese Journal of Applied Physics, 2021, 60, SBBH09.	1.5	10
3	Evaluation of oxidation suppression of multilayer graphene synthesized using fluorene as a solid source. AIP Advances, 2021, 11, .	1.3	2
4	Theoretical study of spreading resistance using anisotropic conductivity parameters for graphene: a comparative study against conventional isotropic conductors. Japanese Journal of Applied Physics, 2021, 60, 015503.	1.5	1
5	Growth of MoS ₂ –Nb-doped MoS ₂ lateral homojunctions: A monolayer <i>p</i> – <i>n</i> diode by substitutional doping. APL Materials, 2021, 9, 121115.	5.1	5
6	Quantifying the spreading resistance of an anisotropic thin film conductor. Scientific Reports, 2020, 10, 10633.	3.3	9
7	Microscopic Mechanism of Van der Waals Heteroepitaxy in the Formation of MoS2/hBN Vertical Heterostructures. ACS Omega, 2020, 5, 31692-31699.	3.5	5
8	Fabrication of layer-by-layer graphene oxide thin film on copper substrate by electrophoretic deposition. Japanese Journal of Applied Physics, 2020, 59, 125001.	1.5	5
9	Gas-Source CVD Growth of Atomic Layered WS2 from WF6 and H2S Precursors with High Grain Size Uniformity. Scientific Reports, 2019, 9, 17678.	3.3	36
10	Development of Simple Fabrication Method of SiO ₂ Diaphragm Using Inward Plasma Etching. Journal of the Vacuum Society of Japan, 2017, 60, 148-152.	0.3	0
11	Electronics of Compound Materials Nanosheets. Hyomen Kagaku, 2016, 37, 527-534.	0.0	0
12	Surface structures of rutile TiO2(114). Japanese Journal of Applied Physics, 2016, 55, 115505.	1.5	1
13	The investigation of graphene film as a new electrical contact material. , 2016, , .		3
14	Characterization of Effective Mobility and Its Degradation Mechanism in MoS2MOSFETs. IEEE Nanotechnology Magazine, 2016, 15, 651-656.	2.0	14
15	Characterization of effective mobility by split C-V technique in MoS2 MOSFETs with high-k/metal gate. , 2015, , .		0
16	Laser induced fluorescence monitoring of the etching processes with the inward plasma. Vacuum, 2015, 121, 300-304.	3.5	3
17	N2 emission-channel change in NO reduction over stepped Pd(211) by angle-resolved desorption. Surface Science, 2012, 606, 1029-1036.	1.9	6
18	Atomic structures of the defective SrTiO3 (001) surface. Physical Chemistry Chemical Physics, 2011, 13, 16516.	2.8	16

Тознітака Киво

#	Article	IF	CITATIONS
19	DFT Calculations of Adsorption and Decomposition of N ₂ 0 on Rh(100). Journal of Physical Chemistry C, 2010, 114, 21444-21449.	3.1	21
20	STM and DFT Studies of the Rutile TiO2(114) Surface. Hyomen Kagaku, 2009, 30, 397-402.	0.0	0
21	Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics: Tuning of Solar-Cell Performance by Structural Modification. Chemistry of Materials, 2008, 20, 3993-4003.	6.7	609
22	Surface Structures of Rutile TiO2(011). Journal of the American Chemical Society, 2007, 129, 10474-10478.	13.7	71
23	Microfaceting Explains Complicated Structures on Rutile TiO2Surfaces. Journal of the American Chemical Society, 2006, 128, 4074-4078.	13.7	24
24	Structure of mercaptoalcohol self-assembled monolayers on Au(111). Applied Surface Science, 2005, 244, 578-583.	6.1	10
25	A New Method to Fabricate Single-Molecule Nanoarrays Using Dendrimer-Based Templates. Advanced Materials, 2003, 15, 1534-1538.	21.0	11
26	Surface structure of SrTiO3(100). Surface Science, 2003, 542, 177-191.	1.9	138
27	Self-organized Fabrication of Ordered Nanostructures of Variable Periodicity on Nonstoichiometric Metal Oxide Materials. Nano Letters, 2002, 2, 1173-1175.	9.1	3
28	Physical properties of spinel nano-structure epitaxially grown on MgO(100). Applied Surface Science, 2002, 188, 545-549.	6.1	5
29	Microscopic properties of the SrTiO3(100) surface. Applied Physics A: Materials Science and Processing, 2001, 72, S277-S280.	2.3	8
30	Adsorption and decomposition of NO on Pt (112). Applied Surface Science, 2001, 169-170, 292-295.	6.1	22
31	Surface Structure ofSrTiO3(100)â^'(5×5)â^'R26.6°. Physical Review Letters, 2001, 86, 1801-1804.	7.8	114
32	Adsorbed states of K on the diamond (100)(2×1) surface. Diamond and Related Materials, 2000, 9, 162-169.	3.9	11
33	Surface Phonons, Electronic Structure and Chemical Reactivity of Diamond (100)(2 ×1) Surface. Japanese Journal of Applied Physics, 1999, 38, 6659-6666.	1.5	25
34	Chemisorbed states of atomic oxygen and its replacement by atomic hydrogen on the diamond (100)-(2×1) surface. Surface Science, 1999, 436, 63-71.	1.9	50
35	First-principles molecular dynamics study of CO adsorption on the Si(001) surface. Chemical Physics Letters, 1998, 287, 131-136.	2.6	21
36	Adsorbed states of CO on the Si(100)-K surface: electron energy-loss spectroscopy and thermal desorption studies. Surface Science, 1998, 395, L246-L251.	1.9	7

Тознітака Киво

#	Article	IF	CITATIONS
37	Investigation on the Surface Electronic States of the Si(001) c(4×2) and c(8×8) Surfaces: An Electron Energy Loss Spectroscopy Study. Japanese Journal of Applied Physics, 1997, 36, L975-L978.	1.5	13
38	Adsorption and Thermal Decomposition of Formic Acid on the Si(100)(2×1)â^'K Surface. Journal of Physical Chemistry B, 1997, 101, 7007-7011.	2.6	14
39	Adsorption and thermal decomposition of N2O on Si(100): electron energy loss spectroscopy and thermal desorption studies. Surface Science, 1997, 382, 214-220.	1.9	13
40	Atomic-hydrogen-induced restructuring of the Si(100)(2 × 1)-K surface. Surface Science, 1995, 337, L783-L788.	1.9	3