Rainer Stahlberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6056758/publications.pdf

Version: 2024-02-01

759233 940533 21 852 12 16 citations h-index g-index papers 21 21 21 660 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Low frequency weak electric fields can induce structural changes in water. PLoS ONE, 2021, 16, e0260967.	2.5	3
2	Origin of the infra-red emission peak in freezing water. Indian Journal of Physics, 2019, 93, 221-227.	1.8	1
3	The phytomimetic potential of three types of hydration motors that drive nastic plant movements. Mechanics of Materials, 2009, 41, 1162-1171.	3.2	19
4	Sensors and actuators inherent in biological species. , 2007, , .		3
5	Response to Alpi et al.: Plant neurobiology: the gain is more than the name. Trends in Plant Science, 2007, 12, 285-286.	8.8	48
6	Plant neurobiology: an integrated view of plant signaling. Trends in Plant Science, 2006, 11, 413-419.	8.8	344
7	Shade-Induced Action Potentials inHelianthus annuusL. Originate Primarily from the Epicotyl. Plant Signaling and Behavior, 2006, 1, 15-22.	2.4	20
8	Historical Overview on Plant Neurobiology. Plant Signaling and Behavior, 2006, 1, 6-8.	2.4	55
9	What can we learn from nastic plant structures? The phytomimetic potentiality of nastic structures. , 2006, 6168, 10.		5
10	Slow Wave Potentials â€" a Propagating Electrical Signal Unique to Higher Plants. , 2006, , 291-308.		60
11	Historical Introduction to Plant Electrophysiology. , 2006, , 3-14.		9
12	Decrement and amplification of slow wave potentials during their propagation in Helianthus annuus L. shoots. Planta, 2005, 220, 550-558.	3.2	28
13	Long-Term Inhibition by Auxin of Leaf Blade Expansion in Bean and Arabidopsis. Plant Physiology, 2004, 134, 1217-1226.	4.8	44
14	Long-distance signaling within Coleus $\tilde{A}-$ hybridus leaves; mediated by changes in intra-leaf CO 2 ?. Planta, 2001, 213, 342-351.	3.2	10
15	Chlorophyll is not the primary photoreceptor for the stimulation of P-type H + pump and growth in variegated leaves of Coleus A— hybridus. Planta, 2000, 212, 1-8.	3.2	16
16	The effect of light on membrane potential, apoplastic pH and cell expansion in leaves of Pisum sativum L. var. Argenteum Planta, 1999, 208, 188-195.	3.2	52
17	Slow wave potentials in cucumber differ in form and growth effect from those in pea seedlings. Physiologia Plantarum, 1997, 101, 379-388.	5.2	2
18	Slow wave potentials in cucumber differ in form and growth effect from those in pea seedlings. Physiologia Plantarum, 1997, 101, 379-388.	5.2	13

#	ARTICLE	IF	CITATION
19	Induction and ionic basis of slow wave potentials in seedlings of Pisum sativum L Planta, 1996, 200, 416-25.	3.2	57
20	Rapid alterations in growth rate and electrical potentials upon stem excision in pea seedlings. Planta, 1992, 187, 523-31.	3.2	63
21	Slow Wave Potentials – a Propagating Electrical Signal Unique to Higher Plants. , 0, , 291-308.		0