
Hugo K Christenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6055958/publications.pdf

Version: 2024-02-01

HUCO K CHRISTENSON

#	Article	IF	CITATIONS
1	Active sites for ice nucleation differ depending on nucleation mode. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
2	Exploiting Confinement to Study the Crystallization Pathway of Calcium Sulfate. Advanced Functional Materials, 2021, 31, 2107312.	14.9	11
3	High-speed imaging of ice nucleation in water proves the existence of active sites. Science Advances, 2019, 5, eaav4316.	10.3	87
4	Self-Assembly of Chiral Menthol Molecules from a Liquid Film into Ring-Banded Spherulites. Crystal Growth and Design, 2019, 19, 4063-4069.	3.0	8
5	Dynamic Measurement of Low Contact Angles by Optical Microscopy. ACS Applied Materials & Interfaces, 2018, 10, 16893-16900.	8.0	12
6	Nucleation- and Emergence-Limited Growth of Ice from Pores. Physical Review Letters, 2018, 120, 165701.	7.8	43
7	Confinement generates single-crystal aragonite rods at room temperature. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7670-7675.	7.1	61
8	lce Layer Spreading along a Solid Substrate during Solidification of Supercooled Water: Experiments and Modeling. Langmuir, 2017, 33, 4870-4877.	3.5	34
9	Observing the formation of ice and organic crystals in active sites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 810-815.	7.1	66
10	Using Confinement To Study the Crystallization Pathway of Calcium Carbonate. Crystal Growth and Design, 2017, 17, 6787-6792.	3.0	22
11	The Effect of Additives on the Early Stages of Growth of Calcite Single Crystals. Angewandte Chemie - International Edition, 2017, 56, 11885-11890.	13.8	46
12	The Effect of Additives on the Early Stages of Growth of Calcite Single Crystals. Angewandte Chemie, 2017, 129, 12047-12052.	2.0	12
13	The role of phase separation and related topography in the exceptional ice-nucleating ability of alkali feldspars. Physical Chemistry Chemical Physics, 2017, 19, 31186-31193.	2.8	63
14	The nature of the air-cleaved mica surface. Surface Science Reports, 2016, 71, 367-390.	7.2	103
15	Effect of Nanoscale Confinement on the Crystallization of Potassium Ferrocyanide. Crystal Growth and Design, 2016, 16, 5403-5411.	3.0	22
16	One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity. Nanoscale, 2016, 8, 14932-14942.	5.6	38
17	ls Ice Nucleation from Supercooled Water Insensitive to Surface Roughness?. Journal of Physical Chemistry C, 2015, 119, 1164-1169.	3.1	85
18	Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nature Communications, 2014, 5, 3169.	12.8	265

HUGO K CHRISTENSON

#	Article	IF	CITATIONS
19	Confinement Increases the Lifetimes of Hydroxyapatite Precursors. Chemistry of Materials, 2014, 26, 5830-5838.	6.7	48
20	Crystal Patterns Created by Rupture of a Thin Film. Crystal Growth and Design, 2013, 13, 5062-5067.	3.0	14
21	Two-step crystal nucleation via capillary condensation. CrystEngComm, 2013, 15, 2030.	2.6	68
22	Confinement Leads to Control over Calcium Sulfate Polymorph. Advanced Functional Materials, 2013, 23, 5615-5623.	14.9	56
23	Characterization of Preferred Crystal Nucleation Sites on Mica Surfaces. Crystal Growth and Design, 2013, 13, 1915-1925.	3.0	16
24	Stability, resolution, and ultra-low wear amplitude modulation atomic force microscopy of DNA: Small amplitude small set-point imaging. Applied Physics Letters, 2013, 103, .	3.3	35
25	A new precipitation pathway for calcium sulfate dihydrate (gypsum) via amorphous and hemihydrate intermediates. Chemical Communications, 2012, 48, 504-506.	4.1	143
26	A two-step mechanism for crystal nucleation without supersaturation. Faraday Discussions, 2012, 159, 123.	3.2	18
27	Early Stages of Crystallization of Calcium Carbonate Revealed in Picoliter Droplets. Journal of the American Chemical Society, 2011, 133, 5210-5213.	13.7	105
28	Capillarity Creates Single rystal Calcite Nanowires from Amorphous Calcium Carbonate. Angewandte Chemie - International Edition, 2011, 50, 12572-12577.	13.8	90
29	Amorphous Calcium Carbonate is Stabilized in Confinement. Advanced Functional Materials, 2010, 20, 2108-2115.	14.9	157
30	Capillary Condensation of Water between Mica Surfaces above and below Zero-Effect of Surface Ions. Langmuir, 2009, 25, 9908-9912.	3.5	15
31	Thermodynamic and kinetic supercooling of liquid in a wedge pore. Journal of Chemical Physics, 2008, 129, 154509.	3.0	23
32	Phase Behavior in Confinement Studied with a Surface Force Apparatus. Journal of Dispersion Science and Technology, 2006, 27, 617-624.	2.4	6
33	Particles on Melt-Cut Mica Sheets Are Platinum. Langmuir, 2003, 19, 975-976.	3.5	21
34	The Effect of Humidity on the Stability of an Octadecyltriethoxysilane Monolayer Self-Assembled on Untreated and Plasma-Treated Mica. Langmuir, 2002, 18, 2125-2129.	3.5	28
35	Confinement effects on freezing and melting. Journal of Physics Condensed Matter, 2001, 13, R95-R133.	1.8	491
36	Phase Behavior of Long-Chain n-Alkanes at One and between Two Mica Surfaces. Journal of Physical Chemistry B, 2001, 105, 5906-5913.	2.6	29