List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/605474/publications.pdf Version: 2024-02-01

HAOLIN

#	Article	IF	CITATIONS
1	iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Research, 2013, 41, e68-e68.	14.5	562
2	iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Research, 2014, 42, 12961-12972.	14.5	467
3	PseKNC: A flexible web server for generating pseudo K-tuple nucleotide composition. Analytical Biochemistry, 2014, 456, 53-60.	2.4	409
4	iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7, 16895-16909.	1.8	354
5	iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition. Analytical Biochemistry, 2015, 490, 26-33.	2.4	350
6	iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics, 2014, 30, 1522-1529.	4.1	349
7	Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Molecular BioSystems, 2015, 11, 2620-2634.	2.9	289
8	The modified Mahalanobis Discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition. Journal of Theoretical Biology, 2008, 252, 350-356.	1.7	287
9	iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Analytical Biochemistry, 2013, 442, 118-125.	2.4	287
10	iRNA-PseColl: Identifying the Occurrence Sites of Different RNA Modifications by Incorporating Collective Effects of Nucleotides into PseKNC. Molecular Therapy - Nucleic Acids, 2017, 7, 155-163.	5.1	259
11	iDNA4mC: identifying DNA N4-methylcytosine sites based on nucleotide chemical properties. Bioinformatics, 2017, 33, 3518-3523.	4.1	256
12	iTIS-PseTNC: A sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Analytical Biochemistry, 2014, 462, 76-83.	2.4	245
13	iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2019, 111, 96-102.	2.9	234
14	iLoc-IncRNA: predict the subcellular location of IncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics, 2018, 34, 4196-4204.	4.1	227
15	PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions. Bioinformatics, 2015, 31, 119-120.	4.1	210
16	Predicting Subcellular Localization of Mycobacterial Proteins by Using Chous Pseudo Amino Acid Composition. Protein and Peptide Letters, 2008, 15, 739-744.	0.9	209
17	iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8, 4208-4217.	1.8	209
18	Predicting protein structural classes for low-similarity sequences by evaluating different features. Knowledge-Based Systems, 2019, 163, 787-793.	7.1	194

#	Article	IF	CITATIONS
19	Prediction of Cell Wall Lytic Enzymes Using Chous Amphiphilic Pseudo Amino Acid Composition. Protein and Peptide Letters, 2009, 16, 351-355.	0.9	187
20	i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome. Bioinformatics, 2019, 35, 2796-2800.	4.1	186
21	iCTX-Type: A Sequence-Based Predictor for Identifying the Types of Conotoxins in Targeting Ion Channels. BioMed Research International, 2014, 2014, 1-10.	1.9	185
22	iNuc-PhysChem: A Sequence-Based Predictor for Identifying Nucleosomes via Physicochemical Properties. PLoS ONE, 2012, 7, e47843.	2.5	181
23	iRNA-3typeA: Identifying Three Types of Modification at RNA's Adenosine Sites. Molecular Therapy - Nucleic Acids, 2018, 11, 468-474.	5.1	173
24	HBPred: a tool to identify growth hormone-binding proteins. International Journal of Biological Sciences, 2018, 14, 957-964.	6.4	173
25	iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics, 2019, 35, 1469-1477.	4.1	173
26	Identify origin of replication in <i>Saccharomyces cerevisiae</i> using two-step feature selection technique. Bioinformatics, 2019, 35, 2075-2083.	4.1	172
27	iRNA-PseU: Identifying RNA pseudouridine sites. Molecular Therapy - Nucleic Acids, 2016, 5, e332.	5.1	172
28	iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget, 2016, 7, 69783-69793.	1.8	166
29	iRNA(m6A)-PseDNC: Identifying N6-methyladenosine sites using pseudo dinucleotide composition. Analytical Biochemistry, 2018, 561-562, 59-65.	2.4	162
30	Using pseudo amino acid composition to predict protein structural class: Approached by incorporating 400 dipeptide components. Journal of Computational Chemistry, 2007, 28, 1463-1466.	3.3	157
31	Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique. Molecular BioSystems, 2016, 12, 1269-1275.	2.9	155
32	RNALocate: a resource for RNA subcellular localizations. Nucleic Acids Research, 2017, 45, D135-D138.	14.5	149
33	Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis. Molecular BioSystems, 2014, 10, 2229-2235.	2.9	147
34	Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition. Journal of Theoretical Biology, 2011, 269, 64-69.	1.7	146
35	NaÃ ⁻ ve Bayes Classifier with Feature Selection to Identify Phage Virion Proteins. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-6.	1.3	145
36	iRSpot-Pse6NC: Identifying recombination spots in <i>Saccharomyces cerevisiae</i> by incorporating hexamer composition into general PseKNC. International Journal of Biological Sciences, 2018, 14, 883-891.	6.4	145

#	Article	IF	CITATIONS
37	iSS-PseDNC: Identifying Splicing Sites Using Pseudo Dinucleotide Composition. BioMed Research International, 2014, 2014, 1-12.	1.9	144
38	Identification of hormone binding proteins based on machine learning methods. Mathematical Biosciences and Engineering, 2019, 16, 2466-2480.	1.9	144
39	iRNA-2OM: A Sequence-Based Predictor for Identifying 2′-O-Methylation Sites in <i>Homo sapiens</i> . Journal of Computational Biology, 2018, 25, 1266-1277.	1.6	137
40	A Brief Survey of Machine Learning Methods in Protein Sub-Golgi Localization. Current Bioinformatics, 2019, 14, 234-240.	1.5	135
41	Prediction of Subcellular Localization of Apoptosis Protein Using Chou's Pseudo Amino Acid Composition. Acta Biotheoretica, 2009, 57, 321-330.	1.5	134
42	Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant. Biochemical and Biophysical Research Communications, 2007, 354, 548-551.	2.1	133
43	Identifying Sigma70 Promoters with Novel Pseudo Nucleotide Composition. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1316-1321.	3.0	132
44	iProEP: A Computational Predictor for Predicting Promoter. Molecular Therapy - Nucleic Acids, 2019, 17, 337-346.	5.1	125
45	MethyRNA: a web server for identification of N ⁶ -methyladenosine sites. Journal of Biomolecular Structure and Dynamics, 2017, 35, 683-687.	3.5	124
46	Risk Prediction of Diabetes: Big data mining with fusion of multifarious physical examination indicators. Information Fusion, 2021, 75, 140-149.	19.1	123
47	ldentification of Secretory Proteins in <i>Mycobacterium tuberculosis</i> Using Pseudo Amino Acid Composition. BioMed Research International, 2016, 2016, 1-7.	1.9	118
48	Evaluation of different computational methods on 5-methylcytosine sites identification. Briefings in Bioinformatics, 2020, 21, 982-995.	6.5	115
49	MimoDB 2.0: a mimotope database and beyond. Nucleic Acids Research, 2012, 40, D271-D277.	14.5	109
50	Predicting the subcellular localization of mycobacterial proteins by incorporating the optimal tripeptides into the general form of pseudo amino acid composition. Molecular BioSystems, 2015, 11, 558-563.	2.9	106
51	Using deformation energy to analyze nucleosome positioning in genomes. Genomics, 2016, 107, 69-75.	2.9	104
52	ldentification of Antioxidants from Sequence Information Using NaÃ⁻ve Bayes. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-5.	1.3	102
53	Design powerful predictor for mRNA subcellular location prediction in <i>Homo sapiens</i> . Briefings in Bioinformatics, 2021, 22, 526-535.	6.5	100
54	Identification of Bacterial Cell Wall Lyases via Pseudo Amino Acid Composition. BioMed Research International, 2016, 2016, 1-8.	1.9	99

#	Article	IF	CITATIONS
55	Identify Golgi Protein Types with Modified Mahalanobis Discriminant Algorithm and Pseudo Amino Acid Composition. Protein and Peptide Letters, 2011, 18, 58-63.	0.9	96
56	Identification and analysis of the N6-methyladenosine in the Saccharomyces cerevisiae transcriptome. Scientific Reports, 2015, 5, 13859.	3.3	96
57	DM3Loc: multi-label mRNA subcellular localization prediction and analysis based on multi-head self-attention mechanism. Nucleic Acids Research, 2021, 49, e46-e46.	14.5	95
58	Sequence-based predictive modeling to identify cancerlectins. Oncotarget, 2017, 8, 28169-28175.	1.8	95
59	iDNA-MS: An Integrated Computational Tool for Detecting DNA Modification Sites in Multiple Genomes. IScience, 2020, 23, 100991.	4.1	93
60	AcalPred: A Sequence-Based Tool for Discriminating between Acidic and Alkaline Enzymes. PLoS ONE, 2013, 8, e75726.	2.5	92
61	Pro54DB: a database for experimentally verified sigma-54 promoters. Bioinformatics, 2017, 33, 467-469.	4.1	91
62	Identification of mycobacterial membrane proteins and their types using over-represented tripeptide compositions. Journal of Proteomics, 2012, 77, 321-328.	2.4	90
63	Prediction of Golgi-resident protein types by using feature selection technique. Chemometrics and Intelligent Laboratory Systems, 2013, 124, 9-13.	3.5	90
64	Prediction of thermophilic proteins using feature selection technique. Journal of Microbiological Methods, 2011, 84, 67-70.	1.6	89
65	Prediction of cell-penetrating peptides with feature selection techniques. Biochemical and Biophysical Research Communications, 2016, 477, 150-154.	2.1	87
66	Deep-Kcr: accurate detection of lysine crotonylation sites using deep learning method. Briefings in Bioinformatics, 2021, 22, .	6.5	86
67	iRNA-m7G: Identifying N7-methylguanosine Sites by Fusing Multiple Features. Molecular Therapy - Nucleic Acids, 2019, 18, 269-274.	5.1	85
68	SAROTUP: Scanner and Reporter of Target-Unrelated Peptides. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-7.	3.0	84
69	A comparison and assessment of computational method for identifying recombination hotspots in <i>Saccharomyces cerevisiae</i> . Briefings in Bioinformatics, 2020, 21, 1568-1580.	6.5	78
70	iORI-PseKNC: A predictor for identifying origin of replication with pseudo k-tuple nucleotide composition. Chemometrics and Intelligent Laboratory Systems, 2015, 141, 100-106.	3.5	76
71	iRNAD: a computational tool for identifying D modification sites in RNA sequence. Bioinformatics, 2019, 35, 4922-4929.	4.1	75
72	Early Diagnosis of Hepatocellular Carcinoma Using Machine Learning Method. Frontiers in Bioengineering and Biotechnology, 2020, 8, 254.	4.1	74

#	Article	IF	CITATIONS
73	Using Over-Represented Tetrapeptides to Predict Protein Submitochondria Locations. Acta Biotheoretica, 2013, 61, 259-268.	1.5	73
74	A computational platform to identify origins of replication sites in eukaryotes. Briefings in Bioinformatics, 2021, 22, 1940-1950.	6.5	73
75	BDB: biopanning data bank. Nucleic Acids Research, 2016, 44, D1127-D1132.	14.5	71
76	Computational identification of N6-methyladenosine sites in multiple tissues of mammals. Computational and Structural Biotechnology Journal, 2020, 18, 1084-1091.	4.1	70
77	DeepYY1: a deep learning approach to identify YY1-mediated chromatin loops. Briefings in Bioinformatics, 2021, 22, .	6.5	63
78	The recognition and prediction of σ70 promoters in Escherichia coli K-12. Journal of Theoretical Biology, 2006, 242, 135-141.	1.7	62
79	The celery genome sequence reveals sequential paleoâ€polyploidizations, karyotype evolution and resistance gene reduction in apiales. Plant Biotechnology Journal, 2021, 19, 731-744.	8.3	62
80	iDNA6mA-Rice: A Computational Tool for Detecting N6-Methyladenine Sites in Rice. Frontiers in Genetics, 2019, 10, 793.	2.3	61
81	XG-PseU: an eXtreme Gradient Boosting based method for identifying pseudouridine sites. Molecular Genetics and Genomics, 2020, 295, 13-21.	2.1	61
82	IonchanPred 2.0: A Tool to Predict Ion Channels and Their Types. International Journal of Molecular Sciences, 2017, 18, 1838.	4.1	59
83	iCarPS: a computational tool for identifying protein carbonylation sites by novel encoded features. Bioinformatics, 2021, 37, 171-177.	4.1	59
84	The prediction of protein structural class using averaged chemical shifts. Journal of Biomolecular Structure and Dynamics, 2012, 29, 1147-1153.	3.5	58
85	Identifying N 6-methyladenosine sites in the Arabidopsis thaliana transcriptome. Molecular Genetics and Genomics, 2016, 291, 2225-2229.	2.1	58
86	Prediction of the types of ion channel-targeted conotoxins based on radial basis function network. Toxicology in Vitro, 2013, 27, 852-856.	2.4	57
87	Eukaryotic and prokaryotic promoter prediction using hybrid approach. Theory in Biosciences, 2011, 130, 91-100.	1.4	55
88	Identifying 2′-O-methylationation sites by integrating nucleotide chemical properties and nucleotide compositions. Genomics, 2016, 107, 255-258.	2.9	55
89	RNALocate v2.0: an updated resource for RNA subcellular localization with increased coverage and annotation. Nucleic Acids Research, 2022, 50, D333-D339.	14.5	54
90	Prediction of replication origins by calculating DNA structural properties. FEBS Letters, 2012, 586, 934-938.	2.8	53

#	Article	IF	CITATIONS
91	Recent Advances in Conotoxin Classification by Using Machine Learning Methods. Molecules, 2017, 22, 1057.	3.8	53
92	Identify and analysis crotonylation sites in histone by using support vector machines. Artificial Intelligence in Medicine, 2017, 83, 75-81.	6.5	52
93	Predicting cancerlectins by the optimal g-gap dipeptides. Scientific Reports, 2015, 5, 16964.	3.3	50
94	RAMPred: identifying the N1-methyladenosine sites in eukaryotic transcriptomes. Scientific Reports, 2016, 6, 31080.	3.3	50
95	AOD: the antioxidant protein database. Scientific Reports, 2017, 7, 7449.	3.3	49
96	PSBinder: A Web Service for Predicting Polystyrene Surface-Binding Peptides. BioMed Research International, 2017, 2017, 1-5.	1.9	49
97	Identifying RNA 5-methylcytosine sites via pseudo nucleotide compositions. Molecular BioSystems, 2016, 12, 3307-3311.	2.9	48
98	Prediction of phosphothreonine sites in human proteins by fusing different features. Scientific Reports, 2016, 6, 34817.	3.3	48
99	DeepIPs: comprehensive assessment and computational identification of phosphorylation sites of SARS-CoV-2 infection using a deep learning-based approach. Briefings in Bioinformatics, 2021, 22, .	6.5	48
100	MimoDB: a New Repository for Mimotope Data Derived from Phage Display Technology. Molecules, 2010, 15, 8279-8288.	3.8	47
101	Predicting bacterial essential genes using only sequence composition information. Genetics and Molecular Research, 2014, 13, 4564-4572.	0.2	47
102	PHYPred: a tool for identifying bacteriophage enzymes and hydrolases. Virologica Sinica, 2016, 31, 350-352.	3.0	47
103	PREDICTING SUBCHLOROPLAST LOCATIONS OF PROTEINS BASED ON THE GENERAL FORM OF CHOU'S PSEUDO AMINO ACID COMPOSITION: APPROACHED FROM OPTIMAL TRIPEPTIDE COMPOSITION. International Journal of Biomathematics, 2013, 06, 1350003.	2.9	46
104	Computational Identification of Small Interfering RNA Targets in SARS-CoV-2. Virologica Sinica, 2020, 35, 359-361.	3.0	45
105	Identifying Antioxidant Proteins by Using Optimal Dipeptide Compositions. Interdisciplinary Sciences, Computational Life Sciences, 2016, 8, 186-191.	3.6	42
106	Deep-4mCW2V: A sequence-based predictor to identify N4-methylcytosine sites in Escherichia coli. Methods, 2022, 203, 558-563.	3.8	42
107	Prediction of subcellular location of mycobacterial protein using feature selection techniques. Molecular Diversity, 2010, 14, 667-671.	3.9	41
108	Identification of cyclin protein using gradient boost decision tree algorithm. Computational and Structural Biotechnology Journal, 2021, 19, 4123-4131.	4.1	40

#	Article	IF	CITATIONS
109	Identification of voltage-gated potassium channel subfamilies from sequence information using support vector machine. Computers in Biology and Medicine, 2012, 42, 504-507.	7.0	39
110	Comparative analysis of long noncoding RNAs in angiosperms and characterization of long noncoding RNAs in response to heat stress in Chinese cabbage. Horticulture Research, 2021, 8, 48.	6.3	38
111	PPD: A Manually Curated Database for Experimentally Verified Prokaryotic Promoters. Journal of Molecular Biology, 2021, 433, 166860.	4.2	37
112	Advances in mapping the epigenetic modifications of 5â€methylcytosine (5mC), N6â€methyladenine (6mA), and N4â€methylcytosine (4mC). Biotechnology and Bioengineering, 2021, 118, 4204-4216.	3.3	37
113	PhD7FASTER: PREDICTING CLONES PROPAGATING FASTER FROM THE Ph.D7 PHAGE DISPLAY PEPTIDE LIBRARY. Journal of Bioinformatics and Computational Biology, 2014, 12, 1450005.	0.8	36
114	Identification of apolipoprotein using feature selection technique. Scientific Reports, 2016, 6, 30441.	3.3	36
115	iRNA-m2G: Identifying N2-methylguanosine Sites Based on Sequence-Derived Information. Molecular Therapy - Nucleic Acids, 2019, 18, 253-258.	5.1	35
116	Prediction of midbody, centrosome and kinetochore proteins based on gene ontology information. Biochemical and Biophysical Research Communications, 2010, 401, 382-384.	2.1	33
117	Prediction of CpG island methylation status by integrating DNA physicochemical properties. Genomics, 2014, 104, 229-233.	2.9	33
118	DNA4mC-LIP: a linear integration method to identify N4-methylcytosine site in multiple species. Bioinformatics, 2020, 36, 3327-3335.	4.1	33
119	Prediction of protein structural classes based on feature selection technique. Interdisciplinary Sciences, Computational Life Sciences, 2014, 6, 235-240.	3.6	32
120	PAI: Predicting adenosine to inosine editing sites by using pseudo nucleotide compositions. Scientific Reports, 2016, 6, 35123.	3.3	32
121	Prediction of ketoacyl synthase family using reduced amino acid alphabets. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 579-584.	3.0	31
122	Predicting the Types of J-Proteins Using Clustered Amino Acids. BioMed Research International, 2014, 2014, 1-8.	1.9	30
123	Identifying the Subfamilies of Voltage-Gated Potassium Channels Using Feature Selection Technique. International Journal of Molecular Sciences, 2014, 15, 12940-12951.	4.1	30
124	Locate-R: Subcellular localization of long non-coding RNAs using nucleotide compositions. Genomics, 2020, 112, 2583-2589.	2.9	29
125	Integrated biomarker profiling of the metabolome associated with impaired fasting glucose and type 2 diabetes mellitus in largeâ€scale Chinese patients. Clinical and Translational Medicine, 2021, 11, e432.	4.0	29
126	Identification of Bacteriophage Virion Proteins Using Multinomial NaÃ ⁻ ve Bayes with g-Gap Feature Tree. International Journal of Molecular Sciences, 2018, 19, 1779.	4.1	28

#	Article	IF	CITATIONS
127	Prediction of bacteriophage proteins located in the host cell using hybrid features. Chemometrics and Intelligent Laboratory Systems, 2018, 180, 64-69.	3.5	28
128	Early Diagnosis of Pancreatic Ductal Adenocarcinoma by Combining Relative Expression Orderings With Machine-Learning Method. Frontiers in Cell and Developmental Biology, 2020, 8, 582864.	3.7	28
129	A sequence-based deep learning approach to predict CTCF-mediated chromatin loop. Briefings in Bioinformatics, 2021, 22, .	6.5	28
130	iDHS-Deep: an integrated tool for predicting DNase I hypersensitive sites by deep neural network. Briefings in Bioinformatics, 2021, 22, .	6.5	28
131	DeepKla: An attention mechanismâ€based deep neural network for protein lysine lactylation site prediction. , 2022, 1, .		26
132	Predicting Preference of Transcription Factors for Methylated DNA Using Sequence Information. Molecular Therapy - Nucleic Acids, 2020, 22, 1043-1050.	5.1	25
133	Identifying RNA N6-Methyladenosine Sites in Escherichia coli Genome. Frontiers in Microbiology, 2018, 9, 955.	3.5	24
134	A Brief Survey of Machine Learning Application in Cancerlectin Identification. Current Gene Therapy, 2018, 18, 257-267.	2.0	24
135	Classifying Included and Excluded Exons in Exon Skipping Event Using Histone Modifications. Frontiers in Genetics, 2018, 9, 433.	2.3	23
136	Rlscoper: a tool for RNA–RNA interaction extraction from the literature. Bioinformatics, 2019, 35, 3199-3202.	4.1	23
137	Deep-4mCGP: A Deep Learning Approach to Predict 4mC Sites in Geobacter pickeringii by Using Correlation-Based Feature Selection Technique. International Journal of Molecular Sciences, 2022, 23, 1251.	4.1	23
138	PSnoD: identifying potential snoRNA-disease associations based on bounded nuclear norm regularization. Briefings in Bioinformatics, 2022, 23, .	6.5	21
139	Sequence analysis of origins of replication in the Saccharomyces cerevisiae genomes. Frontiers in Microbiology, 2014, 5, 574.	3.5	20
140	Recent Advances in Identification of RNA Modifications. Non-coding RNA, 2017, 3, 1.	2.6	20
141	Combining pseudo dinucleotide composition with the Z curve method to improve the accuracy of predicting DNA elements: a case study in recombination spots. Molecular BioSystems, 2016, 12, 2893-2900.	2.9	19
142	Predicting the Organelle Location of Noncoding RNAs Using Pseudo Nucleotide Compositions. Interdisciplinary Sciences, Computational Life Sciences, 2017, 9, 540-544.	3.6	19
143	Towards a better prediction of subcellular location of long non-coding RNA. Frontiers of Computer Science, 2022, 16, 1.	2.4	19
144	The effect of regions flanking target site on siRNA potency. Genomics, 2013, 102, 215-222.	2.9	18

#	Article	IF	CITATIONS
145	A plot of G + C content against sequence length of 640 bacterial chromosomes shows the points are widely scattered in the upper triangular area. Chromosome Research, 2009, 17, 359-364.	2.2	17
146	Revealing Gene Function and Transcription Relationship by Reconstructing Gene-Level Chromatin Interaction. Computational and Structural Biotechnology Journal, 2019, 17, 195-205.	4.1	16
147	Entropy Production Rate Changes in Lysogeny/Lysis Switch Regulation of Bacteriophage Lambda. Communications in Theoretical Physics, 2011, 55, 371-375.	2.5	15
148	iRice-MS: An integrated XGBoost model for detecting multitype post-translational modification sites in rice. Briefings in Bioinformatics, 2022, 23, .	6.5	15
149	BDselect: A Package for <i>k</i> -mer Selection Based on the Binomial Distribution. Current Bioinformatics, 2022, 17, 238-244.	1.5	15
150	Chromosome translocation and its consequence in the genome of Burkholderia cenocepacia AU-1054. Biochemical and Biophysical Research Communications, 2010, 403, 375-379.	2.1	14
151	Detection of transcription factors binding to methylated DNA by deep recurrent neural network. Briefings in Bioinformatics, 2022, 23, .	6.5	14
152	VisFeature: a stand-alone program for visualizing and analyzing statistical features of biological sequences. Bioinformatics, 2020, 36, 1277-1278.	4.1	13
153	Risk prediction of diabetes and pre-diabetes based on physical examination data. Mathematical Biosciences and Engineering, 2022, 19, 3597-3608.	1.9	13
154	Prediction of Protein Secondary Structure Using Feature Selection and Analysis Approach. Acta Biotheoretica, 2014, 62, 1-14.	1.5	12
155	Predicting bacteriophage proteins located in host cell with feature selection technique. Computers in Biology and Medicine, 2016, 71, 156-161.	7.0	12
156	Identification of Antioxidant Proteins With Deep Learning From Sequence Information. Frontiers in Pharmacology, 2018, 9, 1036.	3.5	12
157	Screening of Prospective Plant Compounds as H1R and CL1R Inhibitors and Its Antiallergic Efficacy through Molecular Docking Approach. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-9.	1.3	12
158	A deep learning model to identify gene expression level using cobinding transcription factor signals. Briefings in Bioinformatics, 2022, 23, .	6.5	12
159	The Brassicaceae genome resource (TBGR): A comprehensive genome platform for Brassicaceae plants. Plant Physiology, 2022, 190, 226-237.	4.8	12
160	MDC-Analyzer-facilitated combinatorial strategy for improving the activity and stability of halohydrin dehalogenase from Agrobacterium radiobacter AD1. Journal of Biotechnology, 2015, 206, 1-7.	3.8	11
161	DNA physical properties outperform sequence compositional information in classifying nucleosome-enriched and -depleted regions. Genomics, 2019, 111, 1167-1175.	2.9	11
162	Predicting Human Enzyme Family Classes by Using Pseudo Amino Acid Composition. Current Proteomics, 2016, 13, 99-104.	0.3	11

#	ARTICLE	IF	CITATIONS
163	Exon skipping event prediction based on histone modifications. Interdisciplinary Sciences, Computational Life Sciences, 2014, 6, 241-249.	3.6	10
164	Training sparse SVM on the core sets of fitting-planes. Neurocomputing, 2014, 130, 20-27.	5.9	10
165	Co-evolution of genomic islands and their bacterial hosts revealed through phylogenetic analyses of 17 groups of homologous genomic islands. Genetics and Molecular Research, 2012, 11, 3735-3743.	0.2	9
166	Benchmark data for identifying N 6 -methyladenosine sites in the Saccharomyces cerevisiae genome. Data in Brief, 2015, 5, 376-378.	1.0	9
167	A computational framework for identifying the transcription factors involved in enhancer-promoter loop formation. Molecular Therapy - Nucleic Acids, 2021, 23, 347-354.	5.1	9
168	Comparative analysis of the <i>TCP</i> gene family in celery, coriander and carrot (family) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf

169	The Development of Machine Learning Methods in Cell-Penetrating Peptides Identification: A Brief Review. Current Drug Metabolism, 2019, 20, 217-223.	1.2	9
170	Comprehensive identification and characterization of simple sequence repeats based on the whole-genome sequences of 14 forest and fruit trees. Forestry Research, 2021, 1, 1-10.	1.1	7
171	A two stages sparse SVM training. International Journal of Machine Learning and Cybernetics, 2014, 5, 425-434.	3.6	6
172	A Fast Projection-Based Algorithm for Clustering Big Data. Interdisciplinary Sciences, Computational Life Sciences, 2019, 11, 360-366.	3.6	6
173	EMCBOW-GPCR: A method for identifying G-protein coupled receptors based on word embedding and wordbooks. Computational and Structural Biotechnology Journal, 2021, 19, 4961-4969.	4.1	6
174	Identification of Key Histone Modifications and Their Regulatory Regions on Gene Expression Level Changes in Chronic Myelogenous Leukemia. Frontiers in Cell and Developmental Biology, 2020, 8, 621578.	3.7	6
175	DNA Physical Parameters Modulate Nucleosome Positioning in the Saccharomyces cerevisiae Genome. Current Bioinformatics, 2014, 9, 188-193.	1.5	6
176	Development and Application of Artificial Intelligence Methods in Biological and Medical Data. Current Bioinformatics, 2020, 15, 515-516.	1.5	6
177	Briefing in Application of Machine Learning Methods in Ion Channel Prediction. Scientific World Journal, The, 2015, 2015, 1-7.	2.1	5
178	Combinatorial Pattern of Histone Modifications in Exon Skipping Event. Frontiers in Genetics, 2019, 10, 122.	2.3	5
179	The Computational Methods in Drug Targets Discovery. Current Drug Targets, 2019, 20, 479-480.	2.1	5
180	Identification of Potential Inhibitors Against SARS-CoV-2 Using Computational Drug Repurposing Study. Current Bioinformatics, 2021, 16, 1320-1327.	1.5	4

#	Article	IF	CITATIONS
181	Recombination spots prediction using DNA physical properties in the saccharomyces cerevisiae genome. , 2012, , .		3
182	Special issue on Computational Resources and Methods in Biological Sciences. International Journal of Biological Sciences, 2018, 14, 807-810.	6.4	3
183	Recent Development of Computational Predicting Bioluminescent Proteins. Current Pharmaceutical Design, 2020, 25, 4264-4273.	1.9	3
184	Recognition of DNase I hypersensitive sites in multiple cell lines. International Journal of Bioinformatics Research and Applications, 2009, 5, 378.	0.2	2
185	Analysis of connection networks among miRNAs differentially expressed in early gastric cancer for disclosing some biological features of disease development. Gene, 2014, 548, 159-165.	2.2	2
186	Maternal energy insufficiency affects testicular development of the offspring in a swine model. Scientific Reports, 2019, 9, 14533.	3.3	2
187	Deform-nu: A DNA Deformation Energy-Based Predictor for Nucleosome Positioning. Frontiers in Cell and Developmental Biology, 2020, 8, 596341.	3.7	2
188	Recent Advancement in Predicting Subcellular Localization of Mycobacterial Protein with Machine Learning Methods. Medicinal Chemistry, 2020, 16, 605-619.	1.5	2
189	Information Loss and Noise Inclusion Risk in Mimotope Based Epitope Mapping. , 2009, , .		1
190	The rate of opening and closing of the DNA gate for topoisomerase II. Theory in Biosciences, 2013, 132, 61-64.	1.4	1
191	Application of Machine Learning Method in Genomics and Proteomics. Scientific World Journal, The, 2015, 2015, 1-2.	2.1	1
192	Computational Method in Protein Structure and Function Data. Protein and Peptide Letters, 2020, 27, 257-258.	0.9	1
193	A Survey for Predicting ATP Binding Residues of Proteins Using Machine Learning Methods. Current Medicinal Chemistry, 2021, 28, .	2.4	1
194	Computational Analysis in Medicinal Chemistry. The Case of Pharmacogenomics and Pharmacoproteomics. Medicinal Chemistry, 2020, 16, 593-593.	1.5	1
195	Editorial: Development and Application of Feature Selection Techniques in Protein Data Analysis and Prediction. Letters in Organic Chemistry, 2017, 14, .	0.5	0
196	Development and Application of Computational Methods to Analysis and Identify Biological Organic Molecular. Letters in Organic Chemistry, 2019, 16, 245-246.	0.5	0
197	Prevention and Control of Pathogens Based on Big-Data Mining and Visualization Analysis. Frontiers in Molecular Biosciences, 2020, 7, 626595.	3.5	0