Jeffrey A Riffell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6054317/publications.pdf Version: 2024-02-01

IFFEDEV A RIFFELL

#	Article	IF	CITATIONS
1	Human attractive cues and mosquito host-seeking behavior. Trends in Parasitology, 2022, 38, 246-264.	3.3	29
2	The olfactory gating of visual preferences to human skin and visible spectra in mosquitoes. Nature Communications, 2022, 13, 555.	12.8	29
3	Visuo-Motor Feedback Modulates Neural Activities in the Medulla of the Honeybee, <i>Apis mellifera</i> . Journal of Neuroscience, 2021, 41, 3192-3203.	3.6	9
4	Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species. Biomolecules, 2021, 11, 719.	4.0	10
5	Fruit odorants mediate co-specialization in a multispecies plant–animal mutualism. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210312.	2.6	11
6	Elimination of vision-guided target attraction in Aedes aegypti using CRISPR. Current Biology, 2021, 31, 4180-4187.e6.	3.9	15
7	Geosmin Attracts Aedes aegypti Mosquitoes to Oviposition Sites. Current Biology, 2020, 30, 127-134.e5.	3.9	65
8	The neuroecology of insect-plant interactions: the importance of physiological state and sensory integration. Current Opinion in Insect Science, 2020, 42, 118-124.	4.4	10
9	The olfactory basis of orchid pollination by mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 708-716.	7.1	94
10	Distinct navigation behaviors in <i>Aedes</i> , <i>Anopheles</i> , and <i>Culex</i> mosquito larvae. Journal of Experimental Biology, 2020, 223, .	1.7	9
11	Scent matters: differential contribution of scent to insect response in flowers with insect vs. wind pollination traits. Annals of Botany, 2019, 123, 289-301.	2.9	28
12	Visual-Olfactory Integration in the Human Disease Vector Mosquito Aedes aegypti. Current Biology, 2019, 29, 2509-2516.e5.	3.9	64
13	Olfaction: Repellents that Congest the Mosquito Nose. Current Biology, 2019, 29, R1124-R1126.	3.9	1
14	Live calcium imaging of Aedes aegypti neuronal tissues reveals differential importance of chemosensory systems for life-history-specific foraging strategies. BMC Neuroscience, 2019, 20, 27.	1.9	21
15	Computational and experimental insights into the chemosensory navigation o <i>f Aedes aegypti</i> mosquito larvae. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191495.	2.6	7
16	Editorial: The Mechanisms of Insect Cognition. Frontiers in Psychology, 2019, 10, 2751.	2.1	14
17	Olfaction, experience and neural mechanisms underlying mosquito host preference. Journal of Experimental Biology, 2018, 221, .	1.7	53
18	Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Scientific Reports, 2018, 8, 2842.	3.3	44

JEFFREY A RIFFELL

#	Article	IF	CITATIONS
19	Modulation of Host Learning in Aedes aegypti Mosquitoes. Current Biology, 2018, 28, 333-344.e8.	3.9	82
20	Biological Mechanisms for Learning: A Computational Model of Olfactory Learning in the Manduca sexta Moth, With Applications to Neural Nets. Frontiers in Computational Neuroscience, 2018, 12, 102.	2.1	17
21	History dependence in insect flight decisions during odor tracking. PLoS Computational Biology, 2018, 14, e1005969.	3.2	47
22	Individual female differences in chemoattractant production change the scale of sea urchin gamete interactions. Developmental Biology, 2017, 422, 186-197.	2.0	12
23	Plant Defense: Timing Is Everything. Current Biology, 2017, 27, R344-R346.	3.9	1
24	Olfactory learning and chemical ecology of olfaction in disease vector mosquitoes: a life history perspective. Current Opinion in Insect Science, 2017, 20, 75-83.	4.4	52
25	Honeybees in a virtual reality environment learn unique combinations of colour and shape. Journal of Experimental Biology, 2017, 220, 3478-3487.	1.7	17
26	The Olfactory Neuroecology of Herbivory, Hostplant Selection and Plant–Pollinator Interactions. Integrative and Comparative Biology, 2016, 56, 856-864.	2.0	1
27	Learning and Memory in Disease Vector Insects. Trends in Parasitology, 2016, 32, 761-771.	3.3	34
28	Neuroecology: Neural Mechanisms of Sensory and Motor Processes that Mediate Ecologically Relevant Behaviors: An Introduction to the Symposium. Integrative and Comparative Biology, 2016, 56, 853-855.	2.0	4
29	Sperm chemotaxis promotes individual fertilization success in sea urchins. Journal of Experimental Biology, 2016, 219, 1458-66.	1.7	37
30	Olfaction in context — sources of nuance in plant–pollinator communication. Current Opinion in Insect Science, 2016, 15, 53-60.	4.4	18
31	The neural bases of host plant selection in a Neuroecology framework. Frontiers in Physiology, 2015, 6, 229.	2.8	15
32	Circadian clock gene <i>LATE ELONGATED HYPOCOTYL</i> directly regulates the timing of floral scent emission in <i>Petunia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9775-9780.	7.1	93
33	Polycyclic aromatic hydrocarbons in caribou, moose, and wolf scat samples from three areas of the Alberta oil sands. Environmental Pollution, 2015, 206, 527-534.	7.5	31
34	Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe. Frontiers in Computational Neuroscience, 2014, 8, 70.	2.1	17
35	Olfactory learning and memory in the disease vector mosquito, <i>Aedes aegypti</i> . Journal of Experimental Biology, 2014, 217, 2321-30.	1.7	54
36	Flower discrimination by pollinators in a dynamic chemical environment. Science, 2014, 344, 1515-1518.	12.6	184

JEFFREY A RIFFELL

#	Article	IF	CITATIONS
37	Neuroethology: Lemon-Fresh Scent Makes Flies Lay Eggs. Current Biology, 2013, 23, R1108-R1110.	3.9	3
38	Neural Basis of a Pollinator's Buffet: Olfactory Specialization and Learning in <i>Manduca sexta</i> . Science, 2013, 339, 200-204.	12.6	120
39	Multimodal Floral Signals and Moth Foraging Decisions. PLoS ONE, 2013, 8, e72809.	2.5	20
40	Olfactory modulation by dopamine in the context of aversive learning. Journal of Neurophysiology, 2012, 108, 539-550.	1.8	36
41	Olfactory ecology and the processing of complex mixtures. Current Opinion in Neurobiology, 2012, 22, 236-242.	4.2	29
42	The Neuroecology of a Pollinator's Buffet: Olfactory Preferences and Learning in Insect Pollinators. Integrative and Comparative Biology, 2011, 51, 781-793.	2.0	31
43	Characterization and Coding of Behaviorally Significant Odor Mixtures. Current Biology, 2009, 19, 335-340.	3.9	205
44	Behavioral consequences of innate preferences and olfactory learning in hawkmoth–flower interactions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3404-3409.	7.1	164
45	Anopheles stephensi Feeding, Flight Behavior, and Infection With Malaria Parasites are Altered by Ingestion of Serotonin. Frontiers in Physiology, 0, 13, .	2.8	4