Lars-Göran MÃ¥rtensson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6053035/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacogenetic studies of thiopurine methyltransferase genotypeâ€phenotype concordance and effect of methotrexate on thiopurine metabolism. Basic and Clinical Pharmacology and Toxicology, 2021, 128, 52-65.	2.5	8
2	Comprehensive study of thiopurine methyltransferase genotype, phenotype, and genotype-phenotype discrepancies in Sweden. Biochemical Pharmacology, 2019, 164, 263-272.	4.4	11
3	Methylation of selenocysteine catalysed by thiopurine S-methyltransferase. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 182-190.	2.4	13
4	One amino acid makes a difference–Characterization of a new TPMT allele and the influence of SAM on TPMT stability. Scientific Reports, 2017, 7, 46428.	3.3	16
5	In Vitro Protein Stability of Two Naturally Occurring Thiopurine <i>S</i> -Methyltransferase Variants: Biophysical Characterization of TPMT*6 and TPMT*8. ACS Omega, 2017, 2, 4991-4999.	3.5	5
6	Robust and convenient analysis of protein thermal and chemical stability. Protein Science, 2015, 24, 2055-2062.	7.6	51
7	Methotrexate binds to recombinant thiopurine S-methyltransferase and inhibits enzyme activity after high-dose infusions in childhood leukaemia. European Journal of Clinical Pharmacology, 2013, 69, 1641-1649.	1.9	21
8	Structural Characteristics Determine the Cause of the Low Enzyme Activity of Two Thiopurine <i>S</i> -Methyltransferase Allelic Variants: A Biophysical Characterization of TPMT*2 and TPMT*5. Biochemistry, 2012, 51, 5912-5920.	2.5	7
9	Characterization of a novel sequence variant, TPMT*28, in the human thiopurine methyltransferase gene. Pharmacogenetics and Genomics, 2010, 20, 700-707.	1.5	25
10	Critical biophysical properties in the <i>Pseudomonas aeruginosa</i> efflux gene regulator MexR are targeted by mutations conferring multidrug resistance. Protein Science, 2010, 19, 680-692.	7.6	32
11	A test of proposed rules for helix capping: Implications for protein design. Protein Science, 2009, 11, 516-521.	7.6	13
12	Thermodynamic Interrogation of a Folding Disease. Mutant Mapping of Position 107 in Human Carbonic Anhydrase II Linked to Marble Brain Disease. Biochemistry, 2008, 47, 1288-1298.	2.5	7
13	Redesign of human carbonic anhydrase II for increased esterase activity and specificity towards esters with long acyl chains. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1601-1606.	2.3	25
14	Denaturant-Assisted Formation of a Stabilizing Disulfide Bridge from Engineered Cysteines in Nonideal Conformationsâ€. Biochemistry, 2005, 44, 3487-3493.	2.5	12
15	Circumnavigating Misfolding Traps in the Energy Landscape through Protein Engineering:Â Suppression of Molten Globule and Aggregation in Carbonic Anhydraseâ€. Biochemistry, 2004, 43, 6803-6807.	2.5	10
16	Dramatic Stabilization of the Native State of Human Carbonic Anhydrase II by an Engineered Disulfide Bondâ€. Biochemistry, 2002, 41, 15867-15875.	2.5	41
17	High-Resolution Probing of Local Conformational Changes in Proteins by the Use of Multiple Labeling: Unfolding and Self-Assembly of Human Carbonic Anhydrase II Monitored by Spin, Fluorescent, and Chemical Reactivity Probes. Biophysical Journal, 2001, 80, 2867-2885.	0.5	35
18	Comparison of Electron Paramagnetic Resonance Methods to Determine Distances between Spin Labels on Human Carbonic Anhydrase II. Biophysical Journal, 2001, 80, 2886-2897.	0.5	74

#	Article	IF	CITATIONS
19	Subtle Differences in Dissociation Rates of Interactions between Destabilized Human Carbonic Anhydrase II Mutants and Immobilized Benzenesulfonamide Inhibitors Probed by a Surface Plasmon Resonance Biosensor. Analytical Biochemistry, 2001, 296, 188-196.	2.4	15
20	Adsorption of Human Carbonic Anhydrase II Variants to Silica Nanoparticles Occur Stepwise:Â Binding Is Followed by Successive Conformational Changes to a Molten-Globule-like State. Langmuir, 2000, 16, 8470-8479.	3.5	61
21	Structural Mapping of an Aggregation Nucleation Site in a Molten Globule Intermediate. Journal of Biological Chemistry, 1999, 274, 32897-32903.	3.4	52
22	Cis-transisomerization is rate-determining in the reactivation of denatured human carbonic anhydrase II as evidenced by proline isomerase. FEBS Letters, 1992, 296, 90-94.	2.8	57
23	Role of an evolutionarily invariant serine for the stability of human carbonic anhydrase II. BBA - Proteins and Proteomics, 1992, 1118, 179-186.	2.1	29
24	Folding around the C-terminus of human carbonic anhydrase II Kinetic characterization by use of a chemically reactive SH-group introduced by protein engineering. FEBS Letters, 1991, 289, 117-122.	2.8	36