Fouad Maalouf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6052924/publications.pdf

Version: 2024-02-01

42 papers 1,795 citations

393982 19 h-index 39 g-index

45 all docs

45 docs citations

45 times ranked

1799 citing authors

#	Article	IF	CITATIONS
1	Genomic regions associated with herbicide tolerance in a worldwide faba bean (Vicia faba L.) collection. Scientific Reports, 2022, 12, 158.	1.6	10
2	Adaptability and Stability of Faba Bean (Vicia faba L.) Accessions under Diverse Environments and Herbicide Treatments. Plants, 2022, 11, 251.	1.6	11
3	Application of Genetic, Genomic Strategies to Address the Biotic Stresses in Faba Bean. , 2022, , 353-380.		O
4	Experimental on-farm trials data of faba bean and wheat intercropping field validation in Lebanon and Morocco. Data in Brief, 2022, 42, 108098.	0.5	1
5	High-Temperature and Drought Stress Effects on Growth, Yield and Nutritional Quality with Transpiration Response to Vapor Pressure Deficit in Lentil. Plants, 2022, 11, 95.	1.6	28
6	Effect of High Temperature Stress During the Reproductive Stage on Grain Yield and Nutritional Quality of Lentil (Lens culinaris Medikus). Frontiers in Nutrition, 2022, 9, 857469.	1.6	15
7	Genetic Dissection of Heat Stress Tolerance in Faba Bean (Vicia faba L.) Using GWAS. Plants, 2022, 11, 1108.	1.6	7
8	Evaluation of performance and stability of new sources for tolerance to post-emergence herbicides		

#	Article	IF	Citations
19	Heat and Drought Stress Impact on Phenology, Grain Yield, and Nutritional Quality of Lentil (Lens) Tj ETQq1 I	0.784314 rg	BT_/Overlock
20	Screening the FIGS Set of Lentil (Lens culinaris Medikus) Germplasm for Tolerance to Terminal Heat and Combined Drought-Heat Stress. Agronomy, 2020, 10, 1036.	1.3	33
21	Efficiency of different breeding strategies in improving the faba bean productivity for sustainable agriculture. Euphytica, 2019, 215, 1.	0.6	6
22	Legume-based rotations have clear economic advantages over cereal monocropping in dry areas. Agronomy for Sustainable Development, 2019, 39, 1.	2.2	40
23	Breeding and genomics status in faba bean (<i>Vicia faba</i>). Plant Breeding, 2019, 138, 465-473.	1.0	61
24	Developing improved varieties of faba bean. Burleigh Dodds Series in Agricultural Science, 2018, , 253-268.	0.1	3
25	Food legume production in China. Crop Journal, 2017, 5, 115-126.	2.3	87
26	A <scp>SNP</scp> â€based consensus genetic map for syntenyâ€based trait targeting in faba bean (<i>Vicia)</i>	Тј ЕТQ ₉ 0 0 0	rgBT /Overlo
27	New faba bean germplasm with multiple resistances to Ascochyta blight, chocolate spot and rust diseases. Euphytica, 2016, 211, 157-167.	0.6	31
28	Integrated management of Ascochyta blight (Didymella fabae) on faba bean under Mediterranean conditions. Crop Protection, 2016, 81, 65-69.	1.0	13
29	Evaluation of faba bean breeding lines for spectral indices, yield traits and yield stability under diverse environments. Crop and Pasture Science, 2015, 66, 1012.	0.7	24
30	Nutritional value, performance, carcass quality, visceral organ size, and blood clinical chemistry of broiler chicks fed 30% tannin-free fava bean diets. Poultry Science, 2014, 93, 2018-2027.	1.5	16
31	Capturing the Heterogeneity of the Error Variances of a Group of Genotypes in Crop Cultivar Trials. Crop Science, 2013, 53, 811-818.	0.8	5
32	Faba bean productivity in saline–drought conditions. European Journal of Agronomy, 2011, 35, 2-12.	1.9	49
33	Yield stability of faba bean lines under diverse broomrape prone production environments. Field Crops Research, 2011, 124, 288-294.	2.3	45
34	Association mapping in durum wheat grown across a broad range of water regimes. Journal of Experimental Botany, 2011, 62, 409-438.	2.4	270
35	Tritordeum, wheat and triticale yield components under multi-local mediterranean drought conditions. Field Crops Research, 2010, 116, 68-74.	2.3	46
36	Direct and correlated responses to upward and downward selection for outcrossing in Vicia faba. Field Crops Research, 2010, 116, 116-126.	2.3	22

#	Article	IF	CITATIONS
37	Understanding the relationships between genetic and phenotypic structures of a collection of elite durum wheat accessions. Field Crops Research, 2010, 119, 91-105.	2.3	54
38	The role of crop-pollinator relationships in breeding for pollinator-friendly legumes: from a breeding perspective. Euphytica, 2009, 170, 35-52.	0.6	53
39	Quantitative Trait Loci for Grain Yield and Adaptation of Durum Wheat (<i>Triticum durum</i> Desf.) Across a Wide Range of Water Availability. Genetics, 2008, 178, 489-511.	1.2	397
40	Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Annals of Applied Biology, 2007, 150, 227-236.	1.3	150
41	A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Genetic Resources: Characterisation and Utilisation, 2006, 4, 79-85.	0.4	54
42	New strategies for increasing heterozygosity in crops: Vicia faba mating system as a study case. Euphytica, 2005, 143, 51-65.	0.6	28