List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6052375/publications.pdf Version: 2024-02-01

HONG-WELXUE

#	Article	IF	CITATIONS
1	Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling. Nature Communications, 2016, 7, 11388.	12.8	1,027
2	Coexpression Analysis Identifies Rice Starch Regulator1, a Rice AP2/EREBP Family Transcription Factor, as a Novel Rice Starch Biosynthesis Regulator Á Â. Plant Physiology, 2010, 154, 927-938.	4.8	325
3	Brassinosteroids Stimulate Plant Tropisms through Modulation of Polar Auxin Transport in Brassica and Arabidopsis. Plant Cell, 2005, 17, 2738-2753.	6.6	218
4	A Novel QTL qTGW3 Encodes the GSK3/SHAGGY-Like Kinase OsGSK5/OsSK41 that Interacts with OsARF4 to Negatively Regulate Grain Size and Weight in Rice. Molecular Plant, 2018, 11, 736-749.	8.3	201
5	Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Research, 2009, 37, 916-930.	14.5	198
6	Arabidopsis PLDζ2 Regulates Vesicle Trafficking and Is Required for Auxin Response. Plant Cell, 2007, 19, 281-295.	6.6	194
7	Function and regulation of phospholipid signalling in plants. Biochemical Journal, 2009, 421, 145-156.	3.7	186
8	Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO Journal, 2010, 29, 1916-1927.	7.8	176
9	PIP5K9, an Arabidopsis Phosphatidylinositol Monophosphate Kinase, Interacts with a Cytosolic Invertase to Negatively Regulate Sugar-Mediated Root Growth. Plant Cell, 2007, 19, 163-181.	6.6	159
10	Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Research, 2010, 20, 935-947.	12.0	149
11	The <i>MADS29</i> Transcription Factor Regulates the Degradation of the Nucellus and the Nucellar Projection during Rice Seed Development. Plant Cell, 2012, 24, 1049-1065.	6.6	149
12	<i>Arabidopsis</i> β-Ketoacyl-[Acyl Carrier Protein] Synthase I Is Crucial for Fatty Acid Synthesis and Plays a Role in Chloroplast Division and Embryo Development Â. Plant Cell, 2010, 22, 3726-3744.	6.6	147
13	The ubiquitinâ€proteasome system in plant responses to environments. Plant, Cell and Environment, 2019, 42, 2931-2944.	5.7	147
14	Inositol Trisphosphate-Induced Ca2+ Signaling Modulates Auxin Transport and PIN Polarity. Developmental Cell, 2011, 20, 855-866.	7.0	121
15	Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Research, 2012, 22, 581-597.	12.0	120
16	Rice ABI5-Like1 Regulates Abscisic Acid and Auxin Responses by Affecting the Expression of ABRE-Containing Genes Â. Plant Physiology, 2011, 156, 1397-1409.	4.8	119
17	Arabidopsis Membrane Steroid Binding Protein 1 Is Involved in Inhibition of Cell Elongation. Plant Cell, 2005, 17, 116-131.	6.6	118
18	Roles ofOsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant Journal, 2003, 36, 189-202.	5.7	117

#	Article	IF	CITATIONS
19	Global Analysis Reveals the Crucial Roles of DNA Methylation during Rice Seed Development. Plant Physiology, 2015, 168, 1417-1432.	4.8	112
20	Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLDÎ ² 1 in seed germination. Cell Research, 2007, 17, 881-894.	12.0	107
21	Phosphatidic acid plays key roles regulating plant development and stress responses. Journal of Integrative Plant Biology, 2018, 60, 851-863.	8.5	100
22	Studies on the Rice LEAF INCLINATION1 (LC1), an IAA–amido Synthetase, Reveal the Effects of Auxin in Leaf Inclination Control. Molecular Plant, 2013, 6, 174-187.	8.3	96
23	Rice aleurone layer specific OsNF-YB1 regulates grain filling and endosperm development by interacting with an ERF transcription factor. Journal of Experimental Botany, 2016, 67, 6399-6411.	4.8	94
24	Auxin Flow in Anther Filaments is Critical for Pollen Grain Development through Regulating Pollen Mitosis. Plant Molecular Biology, 2006, 61, 215-226.	3.9	93
25	A brassinolide-suppressed rice MADS-box transcription factor, OsMDP1, has a negative regulatory role in BR signaling. Plant Journal, 2006, 47, 519-531.	5.7	92
26	Genome-Wide Analysis of the Complex Transcriptional Networks of Rice Developing Seeds. PLoS ONE, 2012, 7, e31081.	2.5	78
27	Functional genomics based understanding of rice endosperm development. Current Opinion in Plant Biology, 2013, 16, 236-246.	7.1	74
28	Phosphatidic Acid (PA) Binds PP2AA1 to Regulate PP2A Activity and PIN1 Polar Localization. Molecular Plant, 2013, 6, 1692-1702.	8.3	74
29	EL1-like Casein Kinases Suppress ABA Signaling and Responses by Phosphorylating and Destabilizing the ABA Receptors PYR/PYLs in Arabidopsis. Molecular Plant, 2018, 11, 706-719.	8.3	72
30	miR1432â€ <i>Os<scp>ACOT</scp></i> (Acylâ€CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice. Plant Biotechnology Journal, 2019, 17, 712-723.	8.3	68
31	A Plant 126-kDa Phosphatidylinositol 4-Kinase with a Novel Repeat Structure. Journal of Biological Chemistry, 1999, 274, 5738-5745.	3.4	67
32	Brassinosteroids Regulate the Differential Growth of Arabidopsis Hypocotyls through Auxin Signaling Components IAA19 and ARF7. Molecular Plant, 2013, 6, 887-904.	8.3	63
33	Cis -12-Oxo-Phytodienoic Acid Stimulates Rice Defense Response to a Piercing-Sucking Insect. Molecular Plant, 2014, 7, 1683-1692.	8.3	61
34	An Arabidopsis inositol phospholipid kinase strongly expressed in procambial cells: Synthesis of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in insect cells by 5-phosphorylation of precursors. Plant Journal, 2001, 26, 561-571.	5.7	59
35	Arabidopsis Casein Kinase1 Proteins CK1.3 and CK1.4 Phosphorylate Cryptochrome2 to Regulate Blue Light Signaling. Plant Cell, 2013, 25, 2618-2632.	6.6	58
36	Genome-Wide Analysis Revealed the Complex Regulatory Network of Brassinosteroid Effects in Photomorphogenesis. Molecular Plant, 2009, 2, 755-772.	8.3	57

#	Article	IF	CITATIONS
37	Global Analysis of Gene Expression Profiles in Brassica napus Developing Seeds Reveals a Conserved Lipid Metabolism Regulation with Arabidopsis thaliana. Molecular Plant, 2009, 2, 1107-1122.	8.3	55
38	Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development. Plant Physiology, 2017, 174, 1728-1746.	4.8	53
39	Development of an efficient method for the isolation of factors involved in gene transcription during rice embryo development. Plant Journal, 2004, 38, 348-357.	5.7	51
40	An Inositol Polyphosphate 5-Phosphatase Functions in PHOTOTROPIN1 Signaling in <i>Arabidopis</i> by Altering Cytosolic Ca2+. Plant Cell, 2008, 20, 353-366.	6.6	51
41	The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking. Cell Research, 2009, 19, 1191-1204.	12.0	51
42	At5PTase13 Modulates Cotyledon Vein Development through Regulating Auxin Homeostasis. Plant Physiology, 2005, 139, 1677-1691.	4.8	50
43	A Role of Arabidopsis Inositol Polyphosphate Kinase, AtlPK2α, in Pollen Germination and Root Growth. Plant Physiology, 2005, 137, 94-103.	4.8	49
44	The <i>Arabidopsis</i> ARCP Protein, CSI1, Which Is Required for Microtubule Stability, Is Necessary for Root and Anther Development. Plant Cell, 2012, 24, 1066-1080.	6.6	49
45	Casein Kinase 1 Regulates Ethylene Synthesis by Phosphorylating and Promoting the Turnover of ACS5. Cell Reports, 2014, 9, 1692-1702.	6.4	49
46	Studies on rice seed quality through analysis of a large-scale T-DNA insertion population. Cell Research, 2009, 19, 380-391.	12.0	45
47	The rice PLATZ protein SHORT GRAIN6 determines grain size by regulating spikelet hull cell division. Journal of Integrative Plant Biology, 2020, 62, 847-864.	8.5	43
48	Rice microtubuleâ€associated protein IQ67â€DOMAIN14 regulates grain shape by modulating microtubule cytoskeleton dynamics. Plant Biotechnology Journal, 2020, 18, 1141-1152.	8.3	43
49	Phospholipase Dâ€derived phosphatidic acid promotes root hair development under phosphorus deficiency by suppressing vacuolar degradation of PINâ€FORMED2. New Phytologist, 2020, 226, 142-155.	7.3	43
50	The Rho-family GTPase <i>OsRac1</i> controls rice grain size and yield by regulating cell division. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16121-16126.	7.1	39
51	The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nature Plants, 2020, 6, 556-569.	9.3	39
52	<i>OsLEC1/OsHAP3E</i> Participates in the Determination of Meristem Identity in Both Vegetative and Reproductive Developments of Rice ^F . Journal of Integrative Plant Biology, 2013, 55, 232-249.	8.5	38
53	Pyrophosphateâ€fructose 6â€phosphate 1â€phosphotransferase (<scp>PFP</scp> 1) regulates starch biosynthesis and seed development via heterotetramer formation in rice (<i>Oryza sativa</i> L.). Plant Biotechnology Journal, 2020, 18, 83-95.	8.3	38
54	Arabidopsis MSBP1 Is Activated by HY5 and HYH and Is Involved in Photomorphogenesis and Brassinosteroid Sensitivity Regulation. Molecular Plant, 2011, 4, 1092-1104.	8.3	36

#	Article	IF	CITATIONS
55	Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078. PLoS Genetics, 2016, 12, e1006252.	3.5	35
56	Functional characterization of GmBZL2 (AtBZR1 like gene) reveals the conserved BR signaling regulation in Glycine max. Scientific Reports, 2016, 6, 31134.	3.3	35
57	OsPIPK1, a Rice Phosphatidylinositol Monophosphate Kinase, Regulates Rice Heading by Modifying the Expression of Floral Induction Genes. Plant Molecular Biology, 2004, 54, 295-310.	3.9	34
58	Functional conservation of the meiotic genes SDS and RCK in male meiosis in the monocot rice. Cell Research, 2009, 19, 768-782.	12.0	33
59	CRISPR Primer Designer: Design primers for knockout and chromosome imaging CRISPRâ€Cas system. Journal of Integrative Plant Biology, 2015, 57, 613-617.	8.5	33
60	SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling. PLoS Genetics, 2018, 14, e1007829.	3.5	33
61	Rice miR394 suppresses leaf inclination through targeting an Fâ€box gene, <i>LEAF INCLINATION 4</i> . Journal of Integrative Plant Biology, 2019, 61, 406-416.	8.5	33
62	Phytohormone dynamics in developing endosperm influence rice grain shape and quality. Journal of Integrative Plant Biology, 2020, 62, 1625-1637.	8.5	33
63	Cloning of Arabidopsis thaliana phosphatidylinositol synthase and functional expression in the yeast pis mutant. Plant Molecular Biology, 2000, 42, 757-764.	3.9	28
64	Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance. Planta, 2012, 235, 69-84.	3.2	28
65	Inositol polyphosphate 5-phosphatase-controlled Ins(1,4,5) <i>P</i> 3/Ca2+ is crucial for maintaining pollen dormancy and regulating early germination of pollen. Development (Cambridge), 2012, 139, 2221-2233.	2.5	27
66	Lipidomic profiling analysis reveals the dynamics of phospholipid molecules in <i>Arabidopsis thaliana</i> seedling growth. Journal of Integrative Plant Biology, 2016, 58, 890-902.	8.5	27
67	<i>>Os<scp>GATA</scp>7</i> modulates brassinosteroidsâ€mediated growth regulation and influences architecture and grain shape. Plant Biotechnology Journal, 2018, 16, 1261-1264.	8.3	26
68	The Highly Charged Region of Plant β-type Phosphatidylinositol 4-kinase is Involved in Membrane Targeting and Phospholipid Binding. Plant Molecular Biology, 2006, 60, 729-746.	3.9	22
69	Interaction of brassinosteroid and cytokinin promotes ovule initiation and increases seed number per silique in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64, 702-716.	8.5	21
70	New insights into the complex and coordinated transcriptional regulation networks underlying rice seed development through cDNA chip-based analysis. Plant Molecular Biology, 2005, 57, 785-804.	3.9	20
71	Receptor-like protein ELT1 promotes brassinosteroid signaling through interacting with and suppressing the endocytosis-mediated degradation of receptor BRI1. Cell Research, 2017, 27, 1182-1185.	12.0	20
72	Shanghai RAPESEED Database: a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica. Nucleic Acids Research, 2007, 36, D1044-D1047.	14.5	19

#	Article	IF	CITATIONS
73	Phosphatidic Acid Regulates BZR1 Activity and Brassinosteroid Signal of Arabidopsis. Molecular Plant, 2014, 7, 445-447.	8.3	18
74	Rice SPL12 coevolved with GW5 to determine grain shape. Science Bulletin, 2021, 66, 2353-2357.	9.0	17
75	Leaf direction: Lamina joint development and environmental responses. Plant, Cell and Environment, 2021, 44, 2441-2454.	5.7	17
76	Rice Homeobox Transcription Factor HOX1a Positively Regulates Gibberellin Responses by Directly Suppressing EL1F. Journal of Integrative Plant Biology, 2011, 53, 869-878.	8.5	15
77	Phosphatidic acid suppresses autophagy through competitive inhibition by binding GAPC (glyceraldehyde-3-phosphate dehydrogenase) and PCK (phosphoglycerate kinase) proteins. Autophagy, 2022, 18, 2656-2670.	9.1	15
78	Two tonoplast proton pumps function in Arabidopsis embryo development. New Phytologist, 2020, 225, 1606-1617.	7.3	14
79	A secretory phospholipase D hydrolyzes phosphatidylcholine to suppress rice heading time. PLoS Genetics, 2021, 17, e1009905.	3.5	12
80	Effective Modulating Brassinosteroids Signal to Study Their Specific Regulation of Reproductive Development and Enhance Yield. Frontiers in Plant Science, 2019, 10, 980.	3.6	11
81	Arabidopsis AUTOPHACY-RELATED3 (ATG3) facilitates the liquid–liquid phase separation of ATG8e to promote autophagy. Science Bulletin, 2022, 67, 350-354.	9.0	11
82	Resequencing and genome-wide association studies of autotetraploid potato. Molecular Horticulture, 2022, 2, .	5.8	11
83	Plant casein kinases phosphorylate and destabilize a cyclin-dependent kinase inhibitor to promote cell division. Plant Physiology, 2021, 187, 917-930.	4.8	10
84	PIN3 positively regulates the late initiation of ovule primordia in Arabidopsis thaliana. PLoS Genetics, 2022, 18, e1010077.	3.5	10
85	Ins(1,4,5)P 3 Suppresses Protein Degradation in Plant Vacuoles by Regulating SNX-Mediated Protein Sorting. Molecular Plant, 2016, 9, 1440-1443.	8.3	7
86	PI4Kγ2 Interacts with E3 Ligase MIEL1 to Regulate Auxin Metabolism and Root Development. Plant Physiology, 2020, 184, 933-944.	4.8	7
87	mRNA surveillance complex PELOTA–HBS1 regulates phosphoinositide-dependent protein kinase1 and plant growth. Plant Physiology, 2021, 186, 2003-2020.	4.8	7
88	The transcription factor OsGATA6 regulates rice heading date and grain number per panicle. Journal of Experimental Botany, 2022, 73, 6133-6149.	4.8	7
89	Deficiency of mitochondrial outer membrane protein 64 confers rice resistance to both piercingâ€sucking and chewing insects in rice. Journal of Integrative Plant Biology, 2020, 62, 1967-1982.	8.5	6
90	Horticulture in a molecular age. Molecular Horticulture, 2021, 1, .	5.8	3