Griet Glorieux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6052344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney International, 2003, 63, 1934-1943.	5.2	1,379
2	Serum Indoxyl Sulfate Is Associated with Vascular Disease and Mortality in Chronic Kidney Disease Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 1551-1558.	4.5	740
3	The Uremic Toxicity of Indoxyl Sulfate and p-Cresyl Sulfate. Journal of the American Society of Nephrology: JASN, 2014, 25, 1897-1907.	6.1	525
4	Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrology Dialysis Transplantation, 2010, 25, 1183-1191.	0.7	371
5	A Bench to Bedside View of Uremic Toxins. Journal of the American Society of Nephrology: JASN, 2008, 19, 863-870.	6.1	287
6	p-Cresyl Sulfate. Toxins, 2017, 9, 52.	3.4	262
7	P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrology Dialysis Transplantation, 2006, 22, 592-596.	0.7	259
8	Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins, 2018, 10, 33.	3.4	218
9	p-Cresyl Sulfate Promotes Insulin Resistance Associated with CKD. Journal of the American Society of Nephrology: JASN, 2013, 24, 88-99.	6.1	216
10	What is new in uremic toxicity?. Pediatric Nephrology, 2008, 23, 1211-1221.	1.7	182
11	Impact of hemodialysis duration on the removal of uremic retention solutes. Kidney International, 2008, 73, 765-770.	5.2	175
12	New insights in uremic toxins. Kidney International, 2003, 63, S6-S10.	5.2	174
13	Effective removal of protein-bound uraemic solutes by different convective strategies: a prospective trial. Nephrology Dialysis Transplantation, 2008, 24, 562-570.	0.7	156
14	The Gut: The Forgotten Organ in Uremia?. Blood Purification, 2010, 29, 130-136.	1.8	139
15	Plasma beta-2 microglobulin is associated with cardiovascular disease in uremic patients. Kidney International, 2012, 82, 1297-1303.	5.2	134
16	An update on uremic toxins. International Urology and Nephrology, 2013, 45, 139-150.	1.4	134
17	Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney International, 2020, 97, 1230-1242.	5.2	125
18	Role of symmetric dimethylarginine in vascular damage by increasing ROS via store-operated calcium influx in monocytes. Nephrology Dialysis Transplantation, 2009, 24, 1429-1435.	0.7	124

#	Article	IF	CITATIONS
19	Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma. Biomaterials, 2013, 34, 7819-7828.	11.4	124
20	Urea and chronic kidney disease: the comeback of the century? (in uraemia research). Nephrology Dialysis Transplantation, 2018, 33, 4-12.	0.7	122
21	Symmetric Dimethylarginine as a Proinflammatory Agent in Chronic Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 2374-2383.	4.5	119
22	Uremic toxins inhibit renal metabolic capacity through interference with glucuronidation and mitochondrial respiration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 142-150.	3.8	105
23	Exploring Protein Binding of Uremic Toxins in Patients with Different Stages of Chronic Kidney Disease and during Hemodialysis. Toxins, 2015, 7, 3933-3946.	3.4	105
24	PROGRESS IN UREMIC TOXIN RESEARCH: Guanidino Compounds as Uremic (Neuro)Toxins. Seminars in Dialysis, 2009, 22, 340-345.	1.3	103
25	Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: clinical data and pathophysiological implications. Nephrology Dialysis Transplantation, 2012, 27, 2388-2396.	0.7	97
26	Protein-Bound Uremic Toxins Stimulate Crosstalk between Leukocytes and Vessel Wall. Journal of the American Society of Nephrology: JASN, 2013, 24, 1981-1994.	6.1	96
27	In vitro study of the potential role of guanidines in leukocyte functions related to atherogenesis and infection. Kidney International, 2004, 65, 2184-2192.	5.2	92
28	Comparison of removal capacity of two consecutive generations of high-flux dialysers during different treatment modalities. Nephrology Dialysis Transplantation, 2011, 26, 2624-2630.	0.7	91
29	Assessment of the association between increasing membrane pore size and endotoxin permeability using a novel experimental dialysis simulation set-up. BMC Nephrology, 2018, 19, 1.	1.8	91
30	Warning: the unfortunate end of p-cresol as a uraemic toxin. Nephrology Dialysis Transplantation, 2011, 26, 1464-1467.	0.7	86
31	P-cresol, a uremic retention solute, alters the endothelial barrier function in vitro. Thrombosis and Haemostasis, 2004, 92, 140-150.	3.4	85
32	The intestine and the kidneys: a bad marriage can be hazardous. CKJ: Clinical Kidney Journal, 2015, 8, 168-179.	2.9	82
33	Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes and Endocrinology,the, 2016, 4, 360-373.	11.4	78
34	p-Cresyl sulphate has pro-inflammatory and cytotoxic actions on human proximal tubular epithelial cells. Nephrology Dialysis Transplantation, 2014, 29, 56-64.	0.7	77
35	Prediction of Chronic Kidney Disease Stage 3 by CKD273, a Urinary Proteomic Biomarker. Kidney International Reports, 2017, 2, 1066-1075.	0.8	77
36	Review on uraemic toxins III: recommendations for handling uraemic retention solutes in vitro towards a standardized approach for research on uraemia. Nephrology Dialysis Transplantation, 2007, 22, 3381-3390.	0.7	74

#	Article	IF	CITATIONS
37	Once upon a time in dialysis: the last days of Kt/V?. Kidney International, 2015, 88, 460-465.	5.2	67
38	Isolation and Quantification of Uremic Toxin Precursor-Generating Gut Bacteria in Chronic Kidney Disease Patients. International Journal of Molecular Sciences, 2020, 21, 1986.	4.1	67
39	Prospective Evaluation of the Change of Predialysis Proteinâ€Bound Uremic Solute Concentration With Postdilution Online Hemodiafiltration. Artificial Organs, 2010, 34, 580-585.	1.9	66
40	Does the Adequacy Parameter Kt/Vurea Reflect Uremic Toxin Concentrations in Hemodialysis Patients?. PLoS ONE, 2013, 8, e76838.	2.5	64
41	New insights in molecular mechanisms involved in chronic kidney disease using high-resolution plasma proteome analysis. Nephrology Dialysis Transplantation, 2015, 30, 1842-1852.	0.7	64
42	Serum levels of miR-126 and miR-223 and outcomes in chronic kidney disease patients. Scientific Reports, 2019, 9, 4477.	3.3	62
43	Does P-Cresylglucuronide Have the Same Impact on Mortality as Other Protein-Bound Uremic Toxins?. PLoS ONE, 2013, 8, e67168.	2.5	60
44	Soluble Tumor Necrosis Factor Receptor 1 and 2 Predict Outcomes in Advanced Chronic Kidney Disease: A Prospective Cohort Study. PLoS ONE, 2015, 10, e0122073.	2.5	59
45	New low-flux mixed matrix membranes that offer superior removal of protein-bound toxins from human plasma. Scientific Reports, 2016, 6, 34429.	3.3	58
46	Toll-like receptor expression in monocytes in patients with chronic kidney disease and haemodialysis: relation with inflammation. Nephrology Dialysis Transplantation, 2011, 26, 955-963.	0.7	57
47	In vitro evidence for immune activating effect of specific AGE structures retained in uremia. Kidney International, 2004, 66, 1873-1880.	5.2	53
48	Chronic Kidney Disease and Fibrosis: The Role of Uremic Retention Solutes. Frontiers in Medicine, 2015, 2, 60.	2.6	52
49	Protein-bound uraemic toxins, dicarbonyl stress and advanced glycation end products in conventional and extended haemodialysis and haemodiafiltration. Nephrology Dialysis Transplantation, 2015, 30, 1395-1402.	0.7	52
50	Guanidino Compounds as Cause of Cardiovascular Damage in Chronic Kidney Disease: An in vitro Evaluation. Blood Purification, 2010, 30, 277-287.	1.8	49
51	A novel UPLC–MS–MS method for simultaneous determination of seven uremic retention toxins with cardiovascular relevance in chronic kidney disease patients. Analytical and Bioanalytical Chemistry, 2013, 405, 1937-1947.	3.7	47
52	Data Sharing Under the General Data Protection Regulation. Hypertension, 2021, 77, 1029-1035.	2.7	47
53	Increased urinary osmolyte excretion indicates chronic kidney disease severity and progression rate. Nephrology Dialysis Transplantation, 2018, 33, 2156-2164.	0.7	46
54	Dialysis water and fluid purity: more than endotoxin. Nephrology Dialysis Transplantation, 2012, 27, 4010-4021.	0.7	45

#	Article	IF	CITATIONS
55	Protein-Bound Uremic Toxin Profiling as a Tool to Optimize Hemodialysis. PLoS ONE, 2016, 11, e0147159.	2.5	45
56	Gut-Derived Metabolites and Their Role in Immune Dysfunction in Chronic Kidney Disease. Toxins, 2020, 12, 245.	3.4	44
57	PROGRESS IN UREMIC TOXIN RESEARCH: Platelet/Leukocyte Activation, Inflammation, and Uremia. Seminars in Dialysis, 2009, 22, 423-427.	1.3	42
58	Effects of Fecal Microbiota Transplantation on Composition in Mice with CKD. Toxins, 2020, 12, 741.	3.4	42
59	Gut microbiota dynamics and uraemic toxins: one size does not fit all. Gut, 2019, 68, 2257.1-2260.	12.1	37
60	Uremic Toxins: Do We Know Enough to Explain Uremia?. Blood Purification, 2008, 26, 77-81.	1.8	32
61	Metabolic profiling of human plasma and urine in chronic kidney disease by hydrophilic interaction liquid chromatography coupled with time-of-flight mass spectrometry: a pilot study. Analytical and Bioanalytical Chemistry, 2017, 409, 2201-2211.	3.7	32
62	Free <i>p</i> -cresyl sulfate shows the highest association with cardiovascular outcome in chronic kidney disease. Nephrology Dialysis Transplantation, 2021, 36, 998-1005.	0.7	32
63	PROGRESS IN UREMIC TOXIN RESEARCH: Uremic Toxins in Acute Kidney Injury. Seminars in Dialysis, 2009, 22, 445-448.	1.3	30
64	A novel bio-assay increases the detection yield of microbiological impurity of dialysis fluid, in comparison to the LAL-test. Nephrology Dialysis Transplantation, 2008, 24, 548-554.	0.7	29
65	Estimated Glomerular Filtration Rate Is a Poor Predictor of the Concentration of Middle Molecular Weight Uremic Solutes in Chronic Kidney Disease. PLoS ONE, 2012, 7, e44201.	2.5	29
66	Development and validation of an ultra-high performance liquid chromatography–tandem mass spectrometry method to measure creatinine in human urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 988, 88-97.	2.3	29
67	New Methods and Technologies for Measuring Uremic Toxins and Quantifying Dialysis Adequacy. Seminars in Dialysis, 2015, 28, 114-124.	1.3	29
68	Levels of Indoxyl Sulfate in Kidney Transplant Patients, and the Relationship With Hard Outcomes. Circulation Journal, 2016, 80, 722-730.	1.6	28
69	Deleting Death and Dialysis: Conservative Care of Cardio-Vascular Risk and Kidney Function Loss in Chronic Kidney Disease (CKD). Toxins, 2018, 10, 237.	3.4	28
70	The Role of Advanced Glycation End Products and Its Soluble Receptor in Kidney Diseases. International Journal of Molecular Sciences, 2022, 23, 3439.	4.1	28
71	Uraemic retention and apoptosis: what is the balance for the inflammatory status in uraemia?. European Journal of Clinical Investigation, 2003, 33, 631-634.	3.4	27
72	PROGRESS IN UREMIC TOXIN RESEARCH: The Role of EUTox in Uremic Toxin Research. Seminars in Dialysis, 2009, 22, 323-328.	1.3	27

#	Article	IF	CITATIONS
73	Determination of Asymmetric and Symmetric Dimethylarginine in Serum from Patients with Chronic Kidney Disease: UPLC-MS/MS versus ELISA. Toxins, 2016, 8, 149.	3.4	26
74	The urinary proteomics classifier chronic kidney disease 273 predicts cardiovascular outcome in patients with chronic kidney disease. Nephrology Dialysis Transplantation, 2021, 36, 811-818.	0.7	26
75	Nonextracorporeal Methods for Decreasing Uremic Solute Concentration: A Future Way To Go?. Seminars in Nephrology, 2014, 34, 228-243.	1.6	25
76	Pro-inflammatory cytokines and leukocyte oxidative burst in chronic kidney disease: culprits or innocent bystanders?. Nephrology Dialysis Transplantation, 2015, 30, 943-951.	0.7	25
77	Uraemic toxins and new methods to control their accumulation: game changers for the concept of dialysis adequacy. CKJ: Clinical Kidney Journal, 2015, 8, 353-362.	2.9	25
78	Evolution of protein-bound uremic toxins indoxyl sulphate and p-cresyl sulphate in acute kidney injury. International Urology and Nephrology, 2019, 51, 293-302.	1.4	25
79	Spontaneous variability of pre-dialysis concentrations of uremic toxins over time in stable hemodialysis patients. PLoS ONE, 2017, 12, e0186010.	2.5	25
80	p-Cresyl glucuronide is a major metabolite of p-cresol in mouse: in contrast to p-cresyl sulphate, p-cresyl glucuronide fails to promote insulin resistance. Nephrology Dialysis Transplantation, 2017, 32, 2000-2009.	0.7	24
81	Inhibition of calcitriol-induced monocyte CD14 expression by uremic toxins: role of purines Journal of the American Society of Nephrology: JASN, 1998, 9, 1826-1831.	6.1	23
82	p -cresol sulfate and indoxyl sulfate: some clouds are gathering in the uremic toxinÂsky. Kidney International, 2017, 92, 1323-1324.	5.2	22
83	The role of the intestinal microbiota in uremic solute accumulation: a focus on sulfur compounds. Journal of Nephrology, 2019, 32, 733-740.	2.0	22
84	Evolution of protein-bound uraemic solutes during predilution haemofiltration. Journal of Nephrology, 2009, 22, 352-7.	2.0	22
85	Low water-soluble uremic toxins. Advances in Chronic Kidney Disease, 2003, 10, 257-269.	2.1	21
86	Early and asymptomatic cardiac dysfunction in chronic kidney disease. Nephrology Dialysis Transplantation, 2018, 33, 450-458.	0.7	21
87	Association between Protein-Bound Uremic Toxins and Asymptomatic Cardiac Dysfunction in Patients with Chronic Kidney Disease. Toxins, 2018, 10, 520.	3.4	21
88	Contribution of the uremic milieu to an increased pro-inflammatory monocytic phenotype in chronic kidney disease. Scientific Reports, 2019, 9, 10236.	3.3	21
89	Uremic Toxin Concentrations are Related to Residual Kidney Function in the Pediatric Hemodialysis Population. Toxins, 2019, 11, 235.	3.4	20
90	What If Not All Metabolites from the Uremic Toxin Generating Pathways Are Toxic? A Hypothesis. Toxins, 2022, 14, 221.	3.4	20

#	Article	IF	CITATIONS
91	Exploring binding characteristics and the related competition of different protein-bound uremic toxins. Biochimie, 2017, 139, 20-26.	2.6	19
92	Uremic toxins promote accumulation of oxidized protein and increased sensitivity to hydrogen peroxide in endothelial cells by impairing the autophagic flux. Biochemical and Biophysical Research Communications, 2020, 523, 123-129.	2.1	19
93	A low aromatic amino-acid diet improves renal function and prevent kidney fibrosis in mice with chronic kidney disease. Scientific Reports, 2021, 11, 19184.	3.3	19
94	Where and When To Inject Low Molecular Weight Heparin in Hemodiafiltration? A Cross Over Randomised Trial. PLoS ONE, 2015, 10, e0128634.	2.5	18
95	The Effect of ß-Glucan Prebiotic on Kidney Function, Uremic Toxins and Gut Microbiome in Stage 3 to 5 Chronic Kidney Disease (CKD) Predialysis Participants: A Randomized Controlled Trial. Nutrients, 2022, 14, 805.	4.1	18
96	Difference in Profiles of the Gut-Derived Tryptophan Metabolite Indole Acetic Acid between Transplanted and Non-Transplanted Patients with Chronic Kidney Disease. International Journal of Molecular Sciences, 2020, 21, 2031.	4.1	17
97	Exploring the possibilities of infrared spectroscopy for urine sediment examination and detection of pathogenic bacteria in urinary tract infections. Clinical Chemistry and Laboratory Medicine, 2020, 58, 1759-1767.	2.3	16
98	Accumulation of uraemic toxins is reflected only partially by estimated GFR in paediatric patients with chronic kidney disease. Pediatric Nephrology, 2018, 33, 315-323.	1.7	15
99	Dietary Fibre Intake Is Associated with Serum Levels of Uraemic Toxins in Children with Chronic Kidney Disease. Toxins, 2021, 13, 225.	3.4	15
100	Concentrations of representative uraemic toxins in a healthy versus non-dialysis chronic kidney disease paediatric population. Nephrology Dialysis Transplantation, 2018, 33, 978-986.	0.7	15
101	Binding of bromocresol green and bromocresol purple to albumin in hemodialysis patients. Clinical Chemistry and Laboratory Medicine, 2018, 56, 436-440.	2.3	15
102	Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures. Experimental Neurology, 2016, 277, 244-251.	4.1	14
103	Haemodiafiltration does not lower protein-bound uraemic toxin levels compared with haemodialysis in a paediatric population. Nephrology Dialysis Transplantation, 2020, 35, 648-656.	0.7	14
104	Comparison of five assays for DNA extraction from bacterial cells in human faecal samples. Journal of Applied Microbiology, 2020, 129, 378-388.	3.1	14
105	Development of a MALDI MSâ€based platform for early detection of acute kidney injury. Proteomics - Clinical Applications, 2016, 10, 732-742.	1.6	13
106	Measured Glomerular Filtration Rate: The Query for a Workable Golden Standard Technique. Journal of Personalized Medicine, 2021, 11, 949.	2.5	13
107	Transcriptome Analysis in Patients with Chronic Kidney Disease on Hemodialysis Disclosing a Key Role for CD16+CX3CR1+ Monocytes. PLoS ONE, 2015, 10, e0121750.	2.5	13
108	Specific characteristics of peritoneal leucocyte populations during sterile peritonitis associated with icodextrin CAPD fluids. Nephrology Dialysis Transplantation, 2003, 18, 1648-1653.	0.7	12

#	Article	IF	CITATIONS
109	Hereditary polycystic kidney disease is characterized by lymphopenia across all stages of kidney dysfunction: an observational study. Nephrology Dialysis Transplantation, 2018, 33, 489-496.	0.7	12
110	Serum Levels and Removal by Haemodialysis and Haemodiafiltration of Tryptophan-Derived Uremic Toxins in ESKD Patients. International Journal of Molecular Sciences, 2020, 21, 1522.	4.1	12
111	UV Fluorescence-Based Determination of Urinary Advanced Glycation End Products in Patients with Chronic Kidney Disease. Diagnostics, 2020, 10, 34.	2.6	12
112	Uraemic toxins and cardiovascular disease: in vitro research versus clinical outcome studies. CKJ: Clinical Kidney Journal, 2008, 1, 2-10.	2.9	11
113	Intestinal metabolites, chronic kidney disease and renal transplantation: Enigma Variations?. Nephrology Dialysis Transplantation, 2016, 31, 1547-1551.	0.7	11
114	Effect of sample temperature, pH, and matrix on the percentage protein binding of protein-bound uraemic toxins. Analytical Methods, 2017, 9, 1935-1940.	2.7	11
115	Quantification of carbamylated albumin in serum based on capillary electrophoresis. Electrophoresis, 2017, 38, 2135-2140.	2.4	11
116	Syndecan-1 and Free Indoxyl Sulfate Levels Are Associated with miR-126 in Chronic Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 10549.	4.1	11
117	Gut Microbiome Profiling Uncovers a Lower Abundance of Butyricicoccus in Advanced Stages of Chronic Kidney Disease. Journal of Personalized Medicine, 2021, 11, 1118.	2.5	11
118	Association of advanced age with concentrations of uraemic toxins in CKD. Journal of Nephrology, 2016, 29, 81-91.	2.0	10
119	Uremia-Related Oxidative Stress in Leukocytes Is Not Triggered by β2-Microglobulin. , 2013, 23, 456-463.		9
120	Looking beyond endotoxin: a comparative study of pyrogen retention by ultrafilters used for the preparation of sterile dialyis fluid. Scientific Reports, 2014, 4, 6390.	3.3	9
121	Protein-bound solute removal during extended multipass versus standard hemodialysis. BMC Nephrology, 2015, 16, 57.	1.8	9
122	A plea for more uremic toxin research in children with chronic kidney disease. Pediatric Nephrology, 2018, 33, 921-924.	1.7	8
123	Selective Transport of Protein-Bound Uremic Toxins in Erythrocytes. Toxins, 2019, 11, 385.	3.4	8
124	Gut Microbiota and Their Derived Metabolites, a Search for Potential Targets to Limit Accumulation of Protein-Bound Uremic Toxins in Chronic Kidney Disease. Toxins, 2021, 13, 809.	3.4	8
125	Advanced glycation and the immune system: stimulation, inhibition or both?. European Journal of Clinical Investigation, 2001, 31, 1015-1018.	3.4	7
126	Uremic Toxins and Cardiovascular System. Cardiology Clinics, 2021, 39, 307-318.	2.2	7

#	Article	IF	CITATIONS
127	Dietary fibre intake is low in paediatric chronic kidney disease patients but its impact on levels of gut-derived uraemic toxins remains uncertain. Pediatric Nephrology, 2021, 36, 1589-1595.	1.7	7
128	Gut-Derived Metabolites and Chronic Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 1311-1313.	4.5	6
129	Dietary Advanced Glycation End Products in an Elderly Population with Diabetic Nephropathy: An Exploratory Investigation. Nutrients, 2022, 14, 1818.	4.1	6
130	An in-vitro assay using human spermatozoa to detect toxicity of biologically active substances. Scientific Reports, 2019, 9, 14525.	3.3	5
131	Carbamoylated Nail Proteins as Assessed by Near-Infrared Analysis Are Associated with Load of Uremic Toxins and Mortality in Hemodialysis Patients. Toxins, 2020, 12, 83.	3.4	4
132	Disruption, but not overexpression of urate oxidase alters susceptibility to pentylenetetrazole―and pilocarpineâ€induced seizures in mice. Epilepsia, 2016, 57, e146-50.	5.1	3
133	The Place of Large Pore Membranes in the Treatment Portfolio of Patients on Hemodialysis. Contributions To Nephrology, 2017, 191, 168-177.	1.1	3
134	P0922A LOW AROMATIC AMINO-ACID DIET IMPROVES RENAL FUNCTION AND PREVENTS KIDNEY FIBROSIS IN MICE WITH CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	3
135	Uremic Toxins in Chronic Renal Failure. , 2006, , 71-103.		3
136	Potassium and fiber: a controversial couple in the nutritional management of children with chronic kidney disease. Pediatric Nephrology, 2022, , .	1.7	3
137	Uremic toxins in chronic renal failure. Prilozi / Makedonska Akademija Na Naukite I Umetnostite, Oddelenie Za Bioloiki I Medicinski Nauki = Contributions / Macedonian Academy of Sciences and Arts, Section of Biological and Medical Sciences, 2007, 28, 173-204.	0.2	3
138	Effect of simplified dietary advice on nutritional status and uremic toxins in chronic kidney disease participants. South African Journal of Clinical Nutrition, 0, , 1-9.	0.7	2
139	Prognostic Implications of Plasma Myoglobin Levels in Patients with Chronic Kidney Disease. International Journal of Artificial Organs, 2012, 35, 959-968.	1.4	1
140	TOO11HEALTH UTILITY BUT NOT UREMIC TOXINS ARE ASSOCIATED WITH ONE YEAR MORTALITY IN HD PATIENTS. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	1
141	The impact of intradialytic cycling on the removal of protein-bound uraemic toxins: A randomised cross-over study. International Journal of Artificial Organs, 2021, 44, 156-164.	1.4	1
142	Uremic Toxins. , 2010, , 21-31.		1
143	MO590: A Home-Based Exercise and Physical Activity Intervention After Kidney Transplantation: Impact of Exercise Intensity. The Phoenix-Kidney Study Protocol. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	1

#	Article	IF	CITATIONS
145	Response to Tsikas et al. Comments on Boelaert et al. Determination of Asymmetric and Symmetric Dimethylarginine in Serum from Patients with Chronic Kidney Disease: UPLC–MS/MS versus ELISA. Toxins 2016, 8, 149. Toxins, 2016, 8, 312.	3.4	0
146	SP777TAILORED IMMUNOSUPPRESSION IN DE NOVO RENAL TRANSPLANTATION BASED ON IMMUNE FUNCTION MONITORING: A RANDOMISED CONTROLLED TRIAL. Nephrology Dialysis Transplantation, 2017, 32, iii406-iii406.	0.7	0
147	FP276VALUE OF URINARY PROTEOME-BASED CLASSIFIER ASSOCIATED WITH CHRONIC KIDNEY DISEASE AND ITS PROGRESSION IN THE PROGNOSIS OF A PATIENT-RELEVANT ENDPOINT, MORTALITY. Nephrology Dialysis Transplantation, 2018, 33, i124-i125.	0.7	0
148	SP380ENDOTHELIAL GLYCOCALYX DAMAGE IN CKD: ROLE OF THE UREMIC TOXIN INDOXYL SULFATE. Nephrology Dialysis Transplantation, 2018, 33, i474-i474.	0.7	0
149	FO079CONCENTRATIONS OF P-CRESYL - AND INDOXYL SULFATE AND THEIR PRECURSORS IN DIFFERENT STAGES OF CHRONIC KIDNEY DISEASE: FROM FECES TO URINE. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	0
150	The authors reply. Kidney International, 2020, 98, 784.	5.2	0
151	P0703IDENTIFICATION AND QUANTIFICATION OF UREMIC TOXIN PRECURSORS-GENERATING GUT BACTERIA IN CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
152	MO460ASSOCIATION BETWEEN CARBAMYLATED ALBUMIN, GUT MICROBIOTA AND THEIR DERIVED METABOLITES IN CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
153	Metabolic Waste Products in Acute Uremia. , 2009, , 1093-1097.		0