
Wai Fen Yong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6051838/publications.pdf Version: 2024-02-01

WALFEN YONG

#	Article	IF	CITATIONS
1	Plasticization-enhanced trimethylbenzene functionalized polyethersulfone hollow fiber membranes for propylene and propane separation. Journal of Membrane Science, 2022, 647, 120293.	8.2	7
2	Status and advances of deep eutectic solvents for metal separation and recovery. Green Chemistry, 2022, 24, 1895-1929.	9.0	79
3	Metal–Organic Frameworks (MOFs)â€Based Mixed Matrix Membranes (MMMs) for Gas Separation: A Review on Advanced Materials in Harsh Environmental Applications. Small, 2022, 18, e2107536.	10.0	64
4	Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environmental Research, 2022, 212, 113248.	7.5	103
5	State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. Membranes, 2022, 12, 539.	3.0	22
6	Functionalized two-dimensional g-C3N4 nanosheets in PIM-1 mixed matrix membranes for gas separation. Separation and Purification Technology, 2022, 296, 121354.	7.9	25
7	Recent advances in polymer blend membranes for gas separation and pervaporation. Progress in Materials Science, 2021, 116, 100713.	32.8	177
8	Metal-Organic Frameworks for Environmental Applications. Engineering Materials, 2021, , 1-39.	0.6	0
9	Composite hollow fibers for gas separation. , 2021, , 385-405.		0
10	Highly solvent-durable thin-film molecular sieve membranes with insoluble polyimide nanofibrous substrate. Chemical Engineering Journal, 2021, 409, 128206.	12.7	35
11	Recent Progress of Zwitterionic Materials as Antifouling Membranes for Ultrafiltration, Nanofiltration, and Reverse Osmosis. ACS Applied Polymer Materials, 2021, 3, 4390-4412.	4.4	50
12	Recent advances of thin film nanocomposite membranes: Effects of shape/structure of nanomaterials and interfacial polymerization methods. Chemical Engineering Research and Design, 2021, 172, 135-158.	5.6	29
13	Understanding the role of substrates on thin film composite membranes: A green solvent approach with TamiSolve® NxG. Journal of Membrane Science, 2021, 635, 119530.	8.2	22
14	Recent progress and prospects of polymeric hollow fiber membranes for gas application, water vapor separation and particulate matter removal. Journal of Materials Chemistry A, 2021, 9, 26454-26497.	10.3	29
15	New polyethersulfone (PESU) hollow fiber membranes for CO 2 capture. Journal of Membrane Science, 2018, 552, 305-314.	8.2	46
16	Effects of chemical structure on gas transport properties of polyethersulfone polymers. Polymer, 2018, 135, 76-84.	3.8	36
17	Design of high efficiency PVDF-PEG hollow fibers for air filtration of ultrafine particles. Journal of Membrane Science, 2017, 535, 342-349.	8.2	70
18	Haze particles removal and thermally induced membrane dehumidification system. Separation and Purification Technology, 2017, 185, 24-32.	7.9	9

Wai Fen Yong

#	Article	IF	CITATIONS
19	Mechanically Strong and Flexible Hydrolyzed Polymers of Intrinsic Microporosity (PIMâ€1) Membranes. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 344-354.	2.1	29
20	High-performance composite hollow fiber membrane for flue gas and air separations. Journal of Membrane Science, 2017, 541, 367-377.	8.2	118
21	Novel Hollow Fiber Air Filters for the Removal of Ultrafine Particles in PM _{2.5} with Repetitive Usage Capability. Environmental Science & Technology, 2017, 51, 10041-10049.	10.0	67
22	Nanoparticles Embedded in Amphiphilic Membranes for Carbon Dioxide Separation and Dehumidification. ChemSusChem, 2017, 10, 4046-4055.	6.8	34
23	Effects of hydrolyzed PIM-1 in polyimide-based membranes on C2–C4 alcohols dehydration via pervaporation. Journal of Membrane Science, 2017, 523, 430-438.	8.2	41
24	Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation. ChemSusChem, 2016, 9, 1953-1962.	6.8	74
25	Development of high performance carboxylated PIM-1/P84 blend membranes for pervaporation dehydration of isopropanol and CO2/CH4 separation. Journal of Membrane Science, 2016, 518, 110-119.	8.2	50
26	Hollow Fiber Membrane Dehumidification Device for Air Conditioning System. Membranes, 2015, 5, 722-738.	3.0	61
27	Miscible blends of carboxylated polymers of intrinsic microporosity (cPIM-1) and Matrimid. Polymer, 2015, 59, 290-297.	3.8	57
28	Suppression of aging and plasticization in highly permeable polymers. Polymer, 2015, 77, 377-386.	3.8	114
29	Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes. Journal of Membrane Science, 2014, 462, 119-130.	8.2	70
30	High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation. Journal of Membrane Science, 2013, 443, 156-169.	8.2	129
31	Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification. Journal of Materials Chemistry A, 2013, 1, 13914.	10.3	97
32	Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. Journal of Membrane Science, 2012, 407-408, 47-57.	8.2	176