
## Lucia Biasutto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6051017/publications.pdf Version: 2024-02-01



Ι μείλ Βιλεμττο

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Long-Term Pterostilbene Supplementation of a High-Fat Diet Increases Adiponectin Expression in the<br>Subcutaneous White Adipose Tissue. Nutraceuticals, 2022, 2, 102-115.                   | 0.6 | 1         |
| 2  | Synthesis and Testing of Novel Isomeric Mitochondriotropic Derivatives of Resveratrol and Quercetin. Methods in Molecular Biology, 2021, 2275, 141-160.                                      | 0.4 | 1         |
| 3  | Synthesis and cellular effects of a mitochondria-targeted inhibitor of the two-pore potassium channel TASK-3. Pharmacological Research, 2021, 164, 105326.                                   | 3.1 | 13        |
| 4  | An Angiopep2-PAPTP Construct Overcomes the Blood-Brain Barrier. New Perspectives against Brain<br>Tumors. Pharmaceuticals, 2021, 14, 129.                                                    | 1.7 | 9         |
| 5  | Exploiting pyocyanin to treat mitochondrial disease due to respiratory complex III dysfunction. Nature Communications, 2021, 12, 2103.                                                       | 5.8 | 16        |
| 6  | Targeting mitochondrial ion channels for cancer therapy. Redox Biology, 2021, 42, 101846.                                                                                                    | 3.9 | 39        |
| 7  | Multiple Mechanisms Converging on Transcription Factor EB Activation by the Natural Phenol<br>Pterostilbene. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-19.                    | 1.9 | 4         |
| 8  | Insight into the mechanism of cytotoxicity of membrane-permeant psoralenic Kv1.3 channel inhibitors by chemical dissection of a novel member of the family. Redox Biology, 2020, 37, 101705. | 3.9 | 22        |
| 9  | Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds.<br>European Journal of Medicinal Chemistry, 2019, 181, 111557.                             | 2.6 | 20        |
| 10 | Browning Effects of a Chronic Pterostilbene Supplementation in Mice Fed a High-Fat Diet.<br>International Journal of Molecular Sciences, 2019, 20, 5377.                                     | 1.8 | 18        |
| 11 | Pharmacological modulation of mitochondrial ion channels. British Journal of Pharmacology, 2019, 176, 4258-4283.                                                                             | 2.7 | 37        |
| 12 | Pterostilbene Improves Cognitive Performance in Aged Rats: An in Vivo Study. Cellular Physiology and<br>Biochemistry, 2019, 52, 232-239.                                                     | 1.1 | 17        |
| 13 | Small-Molecule Modulators of Mitochondrial Channels as Chemotherapeutic Agents. Cellular<br>Physiology and Biochemistry, 2019, 53, 11-43.                                                    | 1.1 | 9         |
| 14 | Novel Mitochondria-Targeted Furocoumarin Derivatives as Possible Anti-Cancer Agents. Frontiers in<br>Oncology, 2018, 8, 122.                                                                 | 1.3 | 26        |
| 15 | Direct Pharmacological Targeting of a Mitochondrial Ion Channel Selectively Kills Tumor Cells<br>InÂVivo. Cancer Cell, 2017, 31, 516-531.e10.                                                | 7.7 | 138       |
| 16 | Novel lipid-mimetic prodrugs delivering active compounds to adipose tissue. European Journal of<br>Medicinal Chemistry, 2017, 135, 77-88.                                                    | 2.6 | 11        |
| 17 | New natural amino acid-bearing prodrugs boost pterostilbene's oral pharmacokinetic and<br>distribution profile. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 149-158.  | 2.0 | 28        |
| 18 | Resveratrol derivatives as a pharmacological tool. Annals of the New York Academy of Sciences, 2017, 1403, 27-37.                                                                            | 1.8 | 47        |

Lucia Biasutto

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Potential anti-cancer activity of 7- O -pentyl quercetin: Efficient, membrane-targeted kinase inhibition<br>and pro-oxidant effect. Pharmacological Research, 2017, 124, 9-19.                       | 3.1 | 10        |
| 20 | Tumor-reducing effect of the clinically used drug clofazimine in a SCID mouse model of pancreatic ductal adenocarcinoma. Oncotarget, 2017, 8, 38276-38293.                                           | 0.8 | 41        |
| 21 | Impact of intracellular ion channels on cancer development and progression. European Biophysics<br>Journal, 2016, 45, 685-707.                                                                       | 1.2 | 40        |
| 22 | The mitochondrial permeability transition pore in AD 2016: An update. Biochimica Et Biophysica Acta -<br>Molecular Cell Research, 2016, 1863, 2515-2530.                                             | 1.9 | 105       |
| 23 | Amino Acid Carbamates As Prodrugs Of Resveratrol. Scientific Reports, 2015, 5, 15216.                                                                                                                | 1.6 | 33        |
| 24 | N-Monosubstituted Methoxy-oligo(ethylene glycol) Carbamate Ester Prodrugs of Resveratrol.<br>Molecules, 2015, 20, 16085-16102.                                                                       | 1.7 | 14        |
| 25 | Synthesis and Evaluation as Prodrugs of Hydrophilic Carbamate Ester Analogues of Resveratrol.<br>Molecular Pharmaceutics, 2015, 12, 3441-3454.                                                       | 2.3 | 21        |
| 26 | Synthesis of resveratrol sulfates: turning a nightmare into a dream. Tetrahedron, 2015, 71, 3100-3106.                                                                                               | 1.0 | 14        |
| 27 | Synthesis and Testing of Novel Isomeric Mitochondriotropic Derivatives of Resveratrol and Quercetin. Methods in Molecular Biology, 2015, 1265, 161-179.                                              | 0.4 | 2         |
| 28 | Prodrugs of Quercetin and Resveratrol: A Strategy Under Development. Current Drug Metabolism,<br>2014, 15, 77-95.                                                                                    | 0.7 | 54        |
| 29 | Mitochondria-targeted Resveratrol Derivatives Act as Cytotoxic Pro-oxidants. Current<br>Pharmaceutical Design, 2014, 20, 172-179.                                                                    | 0.9 | 47        |
| 30 | Pharmacokinetics and tissue distribution of pterostilbene in the rat. Molecular Nutrition and Food Research, 2014, 58, 2122-2132.                                                                    | 1.5 | 60        |
| 31 | Cytotoxicity of mitochondria-targeted resveratrol derivatives: Interactions with respiratory chain complexes and ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1781-1789. | 0.5 | 46        |
| 32 | New Water-Soluble Carbamate Ester Derivatives of Resveratrol. Molecules, 2014, 19, 15900-15917.                                                                                                      | 1.7 | 17        |
| 33 | A Preliminary Fastview of Mitochondrial Protein Profile from Healthy and Type 2 Diabetic Subjects.<br>European Journal of Mass Spectrometry, 2014, 20, 307-315.                                      | 0.5 | 6         |
| 34 | Improving the Efficacy of Plant Polyphenols. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 1332-1342.                                                                                         | 0.9 | 32        |
| 35 | Targets and Strategies for the Mitochondrial Assault on Cancer. , 2014, , 211-264.                                                                                                                   |     | 0         |
| 36 | Acetal Derivatives as Prodrugs of Resveratrol. Molecular Pharmaceutics, 2013, 10, 2781-2792.                                                                                                         | 2.3 | 57        |

Lucia Biasutto

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Retinal pigment epithelium (RPE) exosomes contain signaling phosphoproteins affected by oxidative stress. Experimental Cell Research, 2013, 319, 2113-2123.                                                                                             | 1.2 | 105       |
| 38 | Quercetin Mitochondriotropic Derivatives Antagonize Nitrate Tolerance and Endothelial Dysfunction of Isolated Rat Aorta Rings. Planta Medica, 2013, 79, 465-467.                                                                                        | 0.7 | 8         |
| 39 | Intracellular ion channels and cancer. Frontiers in Physiology, 2013, 4, 227.                                                                                                                                                                           | 1.3 | 113       |
| 40 | Resveratrol and Health: The Starting Point. ChemBioChem, 2012, 13, 1256-1259.                                                                                                                                                                           | 1.3 | 30        |
| 41 | Cytotoxicity of a mitochondriotropic quercetin derivative: Mechanisms. Biochimica Et Biophysica Acta<br>- Bioenergetics, 2012, 1817, 1095-1106.                                                                                                         | 0.5 | 34        |
| 42 | Mitochondrial Effects of Plant-Made Compounds. Antioxidants and Redox Signaling, 2011, 15, 3039-3059.                                                                                                                                                   | 2.5 | 26        |
| 43 | Redox Properties and Cytotoxicity of Synthetic Isomeric Mitochondriotropic Derivatives of the<br>Natural Polyphenol Quercetin. European Journal of Organic Chemistry, 2011, 2011, 5577-5586.                                                            | 1.2 | 16        |
| 44 | Impact of mitochondriotropic quercetin derivatives on mitochondria. Biochimica Et Biophysica Acta -<br>Bioenergetics, 2010, 1797, 189-196.                                                                                                              | 0.5 | 43        |
| 45 | An investigation of the occurrence and properties of the mitochondrial intermediate-conductance<br>Ca2+-activated K+ channel mtKCa3.1. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1260-1267.                                            | 0.5 | 38        |
| 46 | Electrophysiology clarifies the megariddles of the mitochondrial permeability transition pore. FEBS<br>Letters, 2010, 584, 1997-2004.                                                                                                                   | 1.3 | 30        |
| 47 | Determination of Quercetin and Resveratrol in Whole Blood—Implications for Bioavailability Studies.<br>Molecules, 2010, 15, 6570-6579.                                                                                                                  | 1.7 | 63        |
| 48 | Mitochondrially targeted anti-cancer agents. Mitochondrion, 2010, 10, 670-681.                                                                                                                                                                          | 1.6 | 114       |
| 49 | Regioselective O-Derivatization of Quercetin via Ester Intermediates. An Improved Synthesis of<br>Rhamnetin and Development of a New Mitochondriotropic Derivative. Molecules, 2010, 15, 4722-4736.                                                     | 1.7 | 48        |
| 50 | Absorption and Metabolism of Resveratrol Carboxyesters and Methanesulfonate by Explanted Rat<br>Intestinal Segments. Cellular Physiology and Biochemistry, 2009, 24, 557-566.                                                                           | 1.1 | 24        |
| 51 | Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition<br>pore: A demonstration of the ambivalent redox character of polyphenols. Biochimica Et Biophysica<br>Acta - Bioenergetics, 2009, 1787, 1425-1432. | 0.5 | 101       |
| 52 | Soluble polyphenols: Synthesis and bioavailability of 3,4′,5-tri(α-d-glucose-3-O-succinyl) resveratrol.<br>Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6721-6724.                                                                             | 1.0 | 42        |
| 53 | A Mitochondriotropic Derivative of Quercetin: A Strategy to Increase the Effectiveness of Polyphenols. ChemBioChem, 2008, 9, 2633-2642.                                                                                                                 | 1.3 | 60        |
| 54 | Development of mitochondria-targeted derivatives of resveratrol. Bioorganic and Medicinal<br>Chemistry Letters, 2008, 18, 5594-5597.                                                                                                                    | 1.0 | 105       |

| #  | Article                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Ester-Based Precursors to Increase the Bioavailability of Quercetin. Journal of Medicinal Chemistry, 2007, 50, 241-253. | 2.9 | 85        |