List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6050929/publications.pdf Version: 2024-02-01

ALESSIA FINOTTI

#	Article	IF	CITATIONS
1	Phytochemical Analysis and <i>in vitro</i> Antiviral Activities of the Essential Oils of Seven Lebanon Species. Chemistry and Biodiversity, 2008, 5, 461-470.	2.1	216
2	Targeting microRNAs involved in human diseases: A novel approach for modification of gene expression and drug development. Biochemical Pharmacology, 2011, 82, 1416-1429.	4.4	100
3	Pyrogallol, an active compound from the medicinal plant Emblica officinalis, regulates expression of pro-inflammatory genes in bronchial epithelial cells. International Immunopharmacology, 2008, 8, 1672-1680.	3.8	87
4	Mapping the Transcriptional Machinery of the IL-8 Gene in Human Bronchial Epithelial Cells. Journal of Immunology, 2011, 187, 6069-6081.	0.8	84
5	Effects of rapamycin on accumulation of <i>α</i> â€; <i>β</i> â€:and <i>γ</i> â€globin mRNAs in erythroid precursor cells from <i>β</i> â€thalassaemia patients. European Journal of Haematology, 2006, 77, 437-441.	2.2	83
6	Expression of microRNA-93 and Interleukin-8 during <i>Pseudomonas aeruginosa</i> –Mediated Induction of Proinflammatory Responses. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 1144-1155.	2.9	82
7	Expression of miR-210 during erythroid differentiation and induction of γ-globin gene expression. BMB Reports, 2009, 42, 493-499.	2.4	82
8	Accumulation of γâ€globin mRNA in human erythroid cells treated with angelicin. European Journal of Haematology, 2003, 71, 189-198.	2.2	80
9	Transcription Factor Decoy Molecules Based on a Peptide Nucleic Acid (PNA)-DNA Chimera Mimicking Sp1 Binding Sites. Journal of Biological Chemistry, 2003, 278, 7500-7509.	3.4	76
10	Recent trends in the gene therapy of β-thalassemia. Journal of Blood Medicine, 2015, 6, 69.	1.7	76
11	Modulation of the Biological Activity of microRNAâ€210 with Peptide Nucleic Acids (PNAs). ChemMedChem, 2011, 6, 2192-2202.	3.2	72
12	Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. International Journal of Oncology, 2012, 41, 2119-2127.	3.3	67
13	High levels of apoptosis are induced in human glioma cell lines by co-administration of peptide nucleic acids targeting miR-221 and miR-222. International Journal of Oncology, 2016, 48, 1029-1038.	3.3	62
14	Non-invasive Prenatal Testing Using Fetal DNA. Molecular Diagnosis and Therapy, 2019, 23, 291-299.	3.8	62
15	Fetal Hemoglobin Inducers from the Natural World: A Novel Approach for Identification of Drugs for the Treatment of β-Thalassemia and Sickle-Cell Anemia. Evidence-based Complementary and Alternative Medicine, 2009, 6, 141-151.	1.2	59
16	Corilagin is a potent inhibitor of NF-kappaB activity and downregulates TNF-alpha induced expression of IL-8 gene in cystic fibrosis IB3-1 cells. International Immunopharmacology, 2012, 13, 308-315.	3.8	59
17	Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. Journal of Neuro-Oncology, 2014, 118, 19-28.	2.9	57
18	Rapamycinâ€mediated induction of <i>γ</i> â€globin mRNA accumulation in human erythroid cells. British Journal of Haematology, 2004, 126, 612-621.	2.5	56

#	Article	IF	CITATIONS
19	Synthesis of new allyl palladium complexes bearing purine-based NHC ligands with antiproliferative and proapoptotic activities on human ovarian cancer cell lines. Dalton Transactions, 2018, 47, 13616-13630.	3.3	56
20	Phytochemical analysis and in vitro evaluation of the biological activity against herpes simplex virus type 1 (HSV-1) of Cedrus libani A. Rich Phytomedicine, 2008, 15, 79-83.	5.3	55
21	Involvement of miRNA in erythroid differentiation. Epigenomics, 2012, 4, 51-65.	2.1	54
22	Transcription Factor Oligodeoxynucleotides to NF-κB Inhibit Transcription of IL-8 in Bronchial Cells. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 86-96.	2.9	49
23	Docking of molecules identified in bioactive medicinal plants extracts into the p50 NF-kappaB transcription factor: correlation with inhibition of NF-kappaB/DNA interactions and inhibitory effects on IL-8 gene expression. BMC Structural Biology, 2008, 8, 38.	2.3	48
24	Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices. Analytical and Bioanalytical Chemistry, 2015, 407, 1533-1543.	3.7	47
25	Efficient cell penetration and delivery of peptide nucleic acids by an argininocalix[4]arene. Scientific Reports, 2019, 9, 3036.	3.3	46
26	Epigenetic changes as a common trigger of muscle weakness in congenital myopathies. Human Molecular Genetics, 2015, 24, 4636-4647.	2.9	44
27	Phytochemical and pharmacological properties of essential oils from <i>Cedrus</i> species. Natural Product Research, 2018, 32, 1415-1427.	1.8	44
28	MicroRNAs and Long Non-coding RNAs in Genetic Diseases. Molecular Diagnosis and Therapy, 2019, 23, 155-171.	3.8	44
29	A Peptide Nucleic Acid against MicroRNA miR-145-5p Enhances the Expression of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Calu-3 Cells. Molecules, 2018, 23, 71.	3.8	43
30	Everolimus Is a Potent Inducer of Erythroid Differentiation and Î ³ -Globin Gene Expression in Human Erythroid Cells. Acta Haematologica, 2007, 117, 168-176.	1.4	41
31	Decoy oligodeoxyribonucleotides and peptide nucleic acids–DNA chimeras targeting nuclear factor kappa-B: Inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa. Biochemical Pharmacology, 2010, 80, 1887-1894.	4.4	41
32	Recent trends for novel options in experimental biological therapy of Î ² -thalassemia. Expert Opinion on Biological Therapy, 2014, 14, 1443-1454.	3.1	41
33	MicroRNA miR-93-5p regulates expression of IL-8 and VEGF in neuroblastoma SK-N-AS cells. Oncology Reports, 2016, 35, 2866-2872.	2.6	41
34	Liquid biopsy and PCR-free ultrasensitive detection systems in oncology (Review). International Journal of Oncology, 2018, 53, 1395-1434.	3.3	41
35	Benzofuran hydrazones as potential scaffold in the development of multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity. European Journal of Medicinal Chemistry, 2018, 156, 118-125.	5.5	40
36	Induction of Î ³ -globin mRNA, erythroid differentiation and apoptosis in UVA-irradiated human erythroid cells in the presence of furocumarin derivatives. Biochemical Pharmacology, 2008, 75, 810-825.	4.4	39

#	Article	IF	CITATIONS
37	miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs. Epigenomics, 2011, 3, 733-745.	2.1	39
38	Resveratrol: Antioxidant activity and induction of fetal hemoglobin in erythroid cells from normal donors and β-thalassemia patients. International Journal of Molecular Medicine, 2012, 29, 974-82.	4.0	39
39	Development of a novel furocoumarin derivative inhibiting NF-κB dependent biological functions: Design, synthesis and biological effects. European Journal of Medicinal Chemistry, 2011, 46, 4870-4877.	5.5	38
40	Immunomodulatory and Anti-inflammatory Activity in Vitro and in Vivo of a Novel Antimicrobial Candidate. Journal of Biological Chemistry, 2016, 291, 25742-25748.	3.4	38
41	Virtual screening against nuclear factor κB (NF-κB) of a focus library: Identification of bioactive furocoumarin derivatives inhibiting NF-κB dependent biological functions involved in cystic fibrosis. Bioorganic and Medicinal Chemistry, 2010, 18, 8341-8349.	3.0	37
42	Induction of IL-6 gene expression in a CF bronchial epithelial cell line by Pseudomonas aeruginosa is dependent on transcription factors belonging to the Sp1 superfamily. Biochemical and Biophysical Research Communications, 2007, 357, 977-983.	2.1	36
43	BCL11A mRNA Targeting by miR-210: A Possible Network Regulating Î ³ -Globin Gene Expression. International Journal of Molecular Sciences, 2017, 18, 2530.	4.1	36
44	Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines. BMC Biochemistry, 2011, 12, 15.	4.4	34
45	Trimethylangelicin reduces IL-8 transcription and potentiates CFTR function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L380-L390.	2.9	34
46	Psoralen Derivatives as Inhibitors of NF-κB/DNA Interaction: Synthesis, Molecular Modeling, 3D-QSAR, and Biological Evaluation. Journal of Medicinal Chemistry, 2013, 56, 1830-1842.	6.4	34
47	Transient Receptor Potential Ankyrin 1 Channels Modulate Inflammatory Response in Respiratory Cells from Patients with Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 645-656.	2.9	34
48	miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma. Oncotarget, 2016, 7, 28195-28206.	1.8	34
49	β-Sitosterol Reduces the Expression of Chemotactic Cytokine Genes in Cystic Fibrosis Bronchial Epithelial Cells. Frontiers in Pharmacology, 2017, 8, 236.	3.5	32
50	Palladium (0) olefin complexes bearing purine-based N-heterocyclic carbenes and 1,3,5-triaza-7-phosphaadamantane (PTA): Synthesis, characterization and antiproliferative activity toward human ovarian cancer cell lines. Journal of Organometallic Chemistry, 2019, 899, 120857.	1.8	32
51	Tackling the COVID-19 "cytokine storm―with microRNA mimics directly targeting the 3'UTR of pro-inflammatory mRNAs. Medical Hypotheses, 2021, 146, 110415.	1.5	32
52	Regulation of IL-8 gene expression in gliomas by microRNA miR-93. BMC Cancer, 2015, 15, 661.	2.6	31
53	Production of βâ€globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous I² ⁰ 39 thalassemia patients. American Journal of Hematology, 2009, 84, 720-728.	4.1	30
54	Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein. Phytomedicine, 2021, 87, 153583.	5.3	30

#	Article	IF	CITATIONS
55	Bergamot (Citrus bergamia Risso) Fruit Extracts as γ-Globin Gene Expression Inducers: Phytochemical and Functional Perspectives. Journal of Agricultural and Food Chemistry, 2009, 57, 4103-4111.	5.2	28
56	Increase of microRNA-210, Decrease of Raptor Gene Expression and Alteration of Mammalian Target of Rapamycin Regulated Proteins following Mithramycin Treatment of Human Erythroid Cells. PLoS ONE, 2015, 10, e0121567.	2.5	28
57	Molecular Mechanism of Action of Trimethylangelicin Derivatives as CFTR Modulators. Frontiers in Pharmacology, 2018, 9, 719.	3.5	28
58	Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β039-thalassemia patients. Molecular Therapy - Methods and Clinical Development, 2021, 21, 507-523.	4.1	28
59	Antibacterial and anti-inflammatory activity of a temporin B peptide analogue on an <i>in vitro</i> model of cystic fibrosis. Journal of Peptide Science, 2014, 20, 822-830.	1.4	27
60	A Distinctive microRNA (miRNA) Signature in the Blood of Colorectal Cancer (CRC) Patients at Surgery. Cancers, 2020, 12, 2410.	3.7	27
61	High Levels of Apoptosis Are Induced in the Human Colon Cancer HT-29 Cell Line by Co-Administration of Sulforaphane and a Peptide Nucleic Acid Targeting miR-15b-5p. Nucleic Acid Therapeutics, 2020, 30, 164-174.	3.6	27
62	Increase in Î ³ -globin mRNA content in human erythroid cells treated with angelicin analogs. International Journal of Hematology, 2009, 90, 318-327.	1.6	26
63	Apoptosis of Human Primary Osteoclasts Treated with Molecules Targeting Nuclear Factorâ€₽̂B. Annals of the New York Academy of Sciences, 2009, 1171, 448-456.	3.8	26
64	Erythroid induction of K562 cells treated with mithramycin is associated with inhibition of raptor gene transcription and mammalian target of rapamycin complex 1 (mTORC1) functions. Pharmacological Research, 2015, 91, 57-68.	7.1	26
65	Modulation of expression of IL-8 gene in bronchial epithelial cells by 5-methoxypsoralen. International Immunopharmacology, 2009, 9, 1411-1422.	3.8	25
66	Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3–1 cells. Artificial DNA, PNA & XNA, 2012, 3, 97-104.	1.4	25
67	<i>InÂvitro</i> evaluation of the anti-proliferative activities of the wood essential oils of three <i>Cedrus</i> species against K562 human chronic myelogenous leukaemia cells. Natural Product Research, 2012, 26, 2227-2231.	1.8	25
68	New insights into the Shwachman-Diamond Syndrome-related haematological disorder: hyper-activation of mTOR and STAT3 in leukocytes. Scientific Reports, 2016, 6, 33165.	3.3	25
69	A validated cellular biobank for \hat{l}^2 -thalassemia. Journal of Translational Medicine, 2016, 14, 255.	4.4	25
70	Liquid biopsy in mice bearing colorectal carcinoma xenografts: gateways regulating the levels of circulating tumor DNA (ctDNA) and miRNA (ctmiRNA). Journal of Experimental and Clinical Cancer Research, 2018, 37, 124.	8.6	25
71	Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Frontiers in Immunology, 2020, 11, 1438.	4.8	25
72	Real-time multiplex analysis of four beta-thalassemia mutations employing surface plasmon resonance and biosensor technology. Laboratory Investigation, 2004, 84, 796-803.	3.7	24

#	Article	IF	CITATIONS
73	Resistance of Decoy PNA–DNA Chimeras to Enzymatic Degradation in Cellular Extracts and Serum. Oncology Research, 2003, 13, 279-287.	1.5	23
74	Targeting miR‑155‑5p and miR‑221‑3p by peptide nucleic acids induces caspase‑3 activation and apo temozolomide‑resistant T98G glioma cells. International Journal of Oncology, 2019, 55, 59-68.	optosis in	22
75	A combined approach for β-thalassemia based on gene therapy-mediated adult hemoglobin (HbA) production and fetal hemoglobin (HbF) induction. Annals of Hematology, 2012, 91, 1201-1213.	1.8	21
76	Peptide Nucleic Acids (PNA)-DNA Chimeras Targeting Transcription Factors as a Tool to Modify Gene Expression. Current Drug Targets, 2004, 5, 735-744.	2.1	21
77	Efficient Delivery of MicroRNA and AntimiRNA Molecules Using an Argininocalix[4]arene Macrocycle. Molecular Therapy - Nucleic Acids, 2019, 18, 748-763.	5.1	20
78	An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system. International Journal of Biological Macromolecules, 2017, 99, 492-498.	7.5	19
79	Corilagin Induces High Levels of Apoptosis in the Temozolomide-Resistant T98G Glioma Cell Line. Oncology Research, 2018, 26, 1307-1315.	1.5	18
80	A Peptide Nucleic Acid (PNA) Masking the miR-145-5p Binding Site of the 3′UTR of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mRNA Enhances CFTR Expression in Calu-3 Cells. Molecules, 2020, 25, 1677.	3.8	18
81	Treatment of human airway epithelial Calu-3Âcells with a peptide-nucleic acid (PNA) targeting the microRNA miR-101-3p is associated with increased expression of the cystic fibrosis Transmembrane Conductance Regulator () gene. European Journal of Medicinal Chemistry, 2021, 209, 112876.	5.5	18
82	Structural and Functional Insights on an Uncharacterized AÎ ³ -Globin-Gene Polymorphism Present in Four βO-Thalassemia Families with High Fetal Hemoglobin Levels. Molecular Diagnosis and Therapy, 2016, 20, 161-173.	3.8	17
83	Effects on erythroid differentiation of platinum(II) complexes of synthetic bile acid derivatives. Bioorganic and Medicinal Chemistry, 2006, 14, 5204-5210.	3.0	16
84	Upstream stimulatory factors are involved in the P1 promoter directed transcription of the AbetaH-J-J locus. BMC Molecular Biology, 2008, 9, 110.	3.0	16
85	Differential Effects of Angelicin Analogues on NF- <i>Ϊ</i> B Activity and IL-8 Gene Expression in Cystic Fibrosis IB3-1 Cells. Mediators of Inflammation, 2017, 2017, 1-11.	3.0	16
86	An AÎ ³ -globin G->A gene polymorphism associated with β039 thalassemia globin gene and high fetal hemoglobin production. BMC Medical Genetics, 2017, 18, 93.	2.1	16
87	Treatment of Erythroid Precursor Cells from Î ² -Thalassemia Patients with Cinchona Alkaloids: Induction of Fetal Hemoglobin Production. International Journal of Molecular Sciences, 2021, 22, 13433.	4.1	16
88	Development of K562 cell clones expressing βâ€globin mRNA carrying the β ⁰ 39 thalassaemia mutation for the screening of correctors of stopâ€codon mutations. Biotechnology and Applied Biochemistry, 2009, 54, 41-52.	3.1	15
89	Modulation of the Expression of the Proinflammatory IL-8 Gene in Cystic Fibrosis Cells by Extracts Deriving from Olive Mill Waste Water. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-11.	1.2	15
90	Decoy Molecules Based on PNA–DNA Chimeras and Targeting Sp1 Transcription Factors Inhibit the Activity of Urokinase-Type Plasminogen Activator Receptor (uPAR) Promoter. Oncology Research, 2005, 15, 373-383.	1.5	15

#	Article	IF	CITATIONS
91	Treatment of Human Glioblastoma U251 Cells with Sulforaphane and a Peptide Nucleic Acid (PNA) Targeting miR-15b-5p: Synergistic Effects on Induction of Apoptosis. Molecules, 2022, 27, 1299.	3.8	15
92	Binding of hybrid molecules containing pyrrolo [2,1-c][1,4]benzodiazepine (PBD) and oligopyrrole carriers to the human immunodeficiency type 1 virus TAR-RNA. Biochemical Pharmacology, 2004, 67, 401-410.	4.4	14
93	Multiple Levels of Control of the Expression of the Human AβH-J-J Locus Encoding Aspartyl-β-hydroxylase, Junctin, and Junctate. Annals of the New York Academy of Sciences, 2006, 1091, 184-190.	3.8	14
94	Induction of Apoptosis of Osteoclasts by Targeting Transcription Factors with Decoy Molecules. Annals of the New York Academy of Sciences, 2006, 1091, 509-516.	3.8	14
95	Transcriptional activity and Sp 1/3 transcription factor binding to the P1 promoter sequences of the human AβHâ€Jâ€J locus. FEBS Journal, 2007, 274, 4476-4490.	4.7	14
96	Virtual Screening against p50 NFâ€ĤB Transcription Factor for the Identification of Inhibitors of the NFâ€ĤB–DNA Interaction and Expression of NFâ€ĤB Upregulated Genes. ChemMedChem, 2009, 4, 2024-2033.	3.2	14
97	Tobramycin is a suppressor of premature termination codons. Journal of Cystic Fibrosis, 2013, 12, 806-811.	0.7	14
98	Development and characterization of K562Âcell clones expressing BCL11A-XL: Decreased hemoglobin production with fetal hemoglobin inducers and its rescue with mithramycin. Experimental Hematology, 2015, 43, 1062-1071.e3.	0.4	13
99	Yâ€chromosome identification in circulating cellâ€free fetal DNA using surface plasmon resonance. Prenatal Diagnosis, 2016, 36, 353-361.	2.3	13
100	PCR detection of segmented filamentous bacteria in the terminal ileum of patients with ulcerative colitis. BMJ Open Gastroenterology, 2017, 4, e000172.	2.7	13
101	Design, synthesis and biological evaluation of novel trimethylangelicin analogues targeting nuclear factor kB (NF-kB). European Journal of Medicinal Chemistry, 2018, 151, 285-293.	5.5	13
102	Myocyte Enhancer Factor 2 Activates Promoter Sequences of the Human AβH-J-J Locus, Encoding Aspartyl-β-Hydroxylase, Junctin, and Junctate. Molecular and Cellular Biology, 2005, 25, 3261-3275.	2.3	12
103	A novel and efficient protocol for Surface Plasmon Resonance based detection of four β-thalassemia point mutations in blood samples and salivary swabs. Sensors and Actuators B: Chemical, 2018, 260, 710-718.	7.8	12
104	Peptide nucleic acid-DNA decoy chimeras targeting NF-kappaB transcription factors: Induction of apoptosis in human primary osteoclasts. International Journal of Molecular Medicine, 2004, 14, 145-52.	4.0	12
105	Targeting DNA Binding for NF-κB as an Anticancer Approach in Hepatocellular Carcinoma. Cells, 2018, 7, 177.	4.1	11
106	Altered erythroidâ€related miRNA levels as a possible novel biomarker for detection of autologous blood transfusion misuse in sport. Transfusion, 2019, 59, 2709-2721.	1.6	11
107	Synthesis and Biological Evaluation of New Antitubulin Agents Containing 2-(3′,4′,5′-trimethoxyanilino)-3,6-disubstituted-4,5,6,7-tetrahydrothieno[2,3-c]pyridine Scaffold. Molecules, 2020, 25, 1690.	3.8	11
108	Induction of erythroid differentiation and increased globin mRNA production with furocoumarins and their photoproducts. Journal of Photochemistry and Photobiology B: Biology, 2013, 121, 57-66.	3.8	10

#	Article	IF	CITATIONS
109	Changes in hemoglobin profile reflect autologous blood transfusion misuse in sports. Internal and Emergency Medicine, 2018, 13, 517-526.	2.0	10
110	An antimicrobial molecule mitigates signs of sepsis in vivo and eradicates infections from lung tissue. FASEB Journal, 2020, 34, 192-207.	0.5	10
111	In vitro induction of interleukin-8 by SARS-CoV-2 Spike protein is inhibited in bronchial epithelial IB3-1 cells by a miR-93-5p agomiR. International Immunopharmacology, 2021, 101, 108201.	3.8	10
112	Pro‑apoptotic activity of novel synthetic isoxazole derivatives exhibiting inhibitory activity against tumor cell growth in vitro . Oncology Letters, 2020, 20, 1-1.	1.8	10
113	Complexation to cationic microspheres of double-stranded peptide nucleic acid-DNA chimeras exhibiting decoy activity. Journal of Biomedical Science, 2004, 11, 697-704.	7.0	9
114	Furocoumarins photolysis products induce differentiation of human erythroid cells. Journal of Photochemistry and Photobiology B: Biology, 2008, 92, 24-28.	3.8	9
115	A Novel Frameshift Mutation (+A) at Codon 18 of the β-Clobin Gene Associated with High Persistence of Fetal Hemoglobin Phenotype and Îβ-Thalassemia. Acta Haematologica, 2008, 119, 28-37.	1.4	9
116	Enhancing the Expression of CFTR Using Antisense Molecules against MicroRNA miR-145-5p. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1443-1444.	5.6	9
117	A Peptide-Nucleic Acid Targeting miR-335-5p Enhances Expression of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene with the Possible Involvement of the CFTR Scaffolding Protein NHERF1. Biomedicines, 2021, 9, 117.	3.2	9
118	Enzymatic Spermine Metabolites Induce Apoptosis Associated with Increase of p53, caspase-3 and miR-34a in Both Neuroblastoma Cells, SJNKP and the N-Myc-Amplified Form IMR5. Cells, 2021, 10, 1950.	4.1	9
119	Molecular Methods for Validation of the Biological Activity of Peptide Nucleic Acids Targeting MicroRNAs. Methods in Molecular Biology, 2014, 1095, 165-176.	0.9	9
120	Chemical-Induced Read-Through at Premature Termination Codons Determined by a Rapid Dual-Fluorescence System Based on S. cerevisiae. PLoS ONE, 2016, 11, e0154260.	2.5	9
121	Synergistic Effects of A Combined Treatment of Glioblastoma U251 Cells with An Anti-miR-10b-5p Molecule and An AntiCancer Agent Based on 1-(3′,4′,5′-Trimethoxyphenyl)-2-Aryl-1H-Imidazole Scaffold. International Journal of Molecular Sciences, 2022, 23, 5991.	4.1	9
122	C(5) modified uracil derivatives showing antiproliferative and erythroid differentiation inducing activities on human chronic myelogenous leukemia K562 cells. European Journal of Pharmacology, 2011, 672, 30-37.	3.5	8
123	A new amido-phosphine of dichloroacetic acid as an active ligand for metals of pharmaceutical interest. Synthesis, characterization and tests of antiproliferative and pro-apoptotic activity. Journal of Inorganic Biochemistry, 2019, 199, 110787.	3.5	7
124	Synergistic effects of the combined treatment of U251 and T98G glioma cells with an anti‑tubulin tetrahydrothieno[2,3‑c]pyridine derivative and a peptide nucleic acid targeting miR‑221‑3p. International Journal of Oncology, 2021, 59, .	3.3	7
125	Tuning the Loading and Release Properties of MicroRNA-Silencing Porous Silicon Nanoparticles by Using Chemically Diverse Peptide Nucleic Acid Payloads. ACS Biomaterials Science and Engineering, 2022, 8, 4123-4131.	5.2	7
126	Peptide Nucleic Acids for MicroRNA Targeting. Methods in Molecular Biology, 2020, 2105, 199-215.	0.9	7

#	Article	IF	CITATIONS
127	Psoralen derivatives as inhibitors of NF- \$\$upkappa hbox {B/DNA}\$\$ κ B/DNA interaction: the critical role of the furan ring. Molecular Diversity, 2015, 19, 551-561.	3.9	6
128	Erythroid differentiation ability of butyric acid analogues: Identification of basal chemical structures of new inducers of foetal haemoglobin. European Journal of Pharmacology, 2015, 752, 84-91.	3.5	6
129	Demonstrating specificity of bioactive peptide nucleic acids (PNAs) targeting microRNAs for practical laboratory classes of applied biochemistry and pharmacology. PLoS ONE, 2019, 14, e0221923.	2.5	5
130	Phytochemical analysis and potential natural compounds against SARS-CoV-2/COVID-19 in essential oils derived from medicinal plants originating from Lebanon. An information note. Plant Biosystems, 2022, 156, 855-864.	1.6	5
131	Possible effects of sirolimus treatment on the long‑term efficacy of COVID‑19 vaccination in patients with β‑thalassemia: A theoretical perspective. International Journal of Molecular Medicine, 2022, 49, .	4.0	5
132	Ground state naÃ⁻ve pluripotent stem cells and CRISPR/Cas9 gene correction for β-thalassemia. Stem Cell Investigation, 2016, 3, 66-66.	3.0	4
133	Polytopic carriers for platinum ions: from digalloyl depside to tannic acid. New Journal of Chemistry, 2020, 44, 12227-12235.	2.8	4
134	Peptide nucleic acids targeting β-globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells. International Journal of Molecular Medicine, 2015, 35, 51-58.	4.0	3
135	Differential effects on the miRNome of the treatment of human airway epithelial Calu-3 cells with peptide-nucleic acids (PNAs) targeting microRNAs miR-101-3p and miR-145-5p: Next generation sequencing datasets. Data in Brief, 2021, 35, 106718.	1.0	3
136	Structural characterization of promoter sequences of the gene coding human PKI55 protein, a protein kinase C inhibitor. Biochimie, 2009, 91, 466-474.	2.6	2
137	Generation and Characterization of a Transgenic Mouse Carrying a Functional Humanβ-Globin Gene with the IVSI-6 Thalassemia Mutation. BioMed Research International, 2015, 2015, 1-20.	1.9	2
138	Orphan Drugs and Potential Novel Approaches for Therapies of β-Thalassemia: Current Status and Future Expectations. Expert Opinion on Orphan Drugs, 2016, 4, 299-315.	0.8	2
139	Development and characterization of cellular biosensors for HTS of erythroid differentiation inducers targeting the transcriptional activity of γ-globin and β-globin gene promoters. Analytical and Bioanalytical Chemistry, 2019, 411, 7669-7680.	3.7	2
140	Delivery of Peptide Nucleic Acids Using an Argininocalix[4]arene as Vector. Methods in Molecular Biology, 2021, 2211, 123-143.	0.9	2
141	Teaching during COVID-19 pandemic in practical laboratory classes of applied biochemistry and pharmacology: A validated fast and simple protocol for detection of SARS-CoV-2 Spike sequences. PLoS ONE, 2022, 17, e0266419.	2.5	2
142	A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs. Wellcome Open Research, 0, 7, 150.	1.8	2
143	Therapy for Cystic Fibrosis Caused by Nonsense Mutations. , 0, , .		1
144	Recent patents and technology transfer for molecular diagnosis of Î ² -thalassemia and other hemoglobinopathies. Expert Opinion on Therapeutic Patents, 2015, 25, 1453-1476.	5.0	1

#	Article	IF	CITATIONS
145	UPF1 silenced cellular model systems for screening of read-through agents active on βO39 thalassemia point mutation. BMC Biotechnology, 2018, 18, 28.	3.3	1
146	Surface plasmon resonance based analysis of the binding of LYAR protein to the rs368698783 (G>A) polymorphic Al̂ ³ -globin gene sequences mutated in l̂²-thalassemia. Analytical and Bioanalytical Chemistry, 2019, 411, 7699-7707.	3.7	1
147	Identification of a novel DNase I hypersensitive site within the far upstream region of the human HLA-DRA gene. International Journal of Molecular Medicine, 2003, 12, 929.	4.0	0
148	Epigenetics and doping in sports—The role of microRNAs. , 2021, , 269-284.		0
149	Genetic Analyses in Health Laboratories: Current Status and Expectations. Soft and Biological Matter, 2012, , 3-24.	0.3	0
150	A Signature of Differentially Expressed Micrornas in Lymphoblastoid Cells from Shwachman-Diamond Syndrome Patients Indicates Possible Molecular Targets for Mirna Therapeutics. Blood, 2019, 134, 2504-2504.	1.4	0
151	Complexation to Cationic Microspheres of Double-Stranded Peptide Nucleic Acid-DNA Chimeras Exhibiting Decoy Activity. Journal of Biomedical Science, 2004, 11, 697-704.	7.0	0