
Michael Veit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6050752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Attenuation of Getah Virus by a Single Amino Acid Substitution at Residue 253 of the E2 Protein that Might Be Part of a New Heparan Sulfate Binding Site on Alphaviruses. Journal of Virology, 2022, 96, jvi0175121.	1.5	11
2	Structural and functional analysis of the roles of Influenza C virus membrane proteins in assembly and budding. Journal of Biological Chemistry, 2022, , 101727.	1.6	1
3	Expression of the Heterotrimeric GP2/GP3/GP4 Spike of an Arterivirus in Mammalian Cells. Viruses, 2022, 14, 749.	1.5	0
4	Molecular Dynamics of DHHC20 Acyltransferase Suggests Principles of Lipid and Protein Substrate Selectivity. International Journal of Molecular Sciences, 2022, 23, 5091.	1.8	6
5	Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Reports, 2022, 39, 110969.	2.9	29
6	<scp>NS1</scp> â€mediated upregulation of <scp>ZDHHC22</scp> acyltransferase in influenza a virus infected cells. Cellular Microbiology, 2021, 23, e13322.	1.1	4
7	Palmitoylation of the envelope membrane proteins GP5 and M of porcine reproductive and respiratory syndrome virus is essential for virus growth. PLoS Pathogens, 2021, 17, e1009554.	2.1	9
8	S-Acylation of Proteins of Coronavirus and Influenza Virus: Conservation of Acylation Sites in Animal Viruses and DHHC Acyltransferases in Their Animal Reservoirs. Pathogens, 2021, 10, 669.	1.2	14
9	Surfactants – Compounds for inactivation of SARS-CoV-2 and other enveloped viruses. Current Opinion in Colloid and Interface Science, 2021, 55, 101479.	3.4	30
10	Emergence and adaptive evolution of influenza D virus. Microbial Pathogenesis, 2021, 160, 105193.	1.3	5
11	Influenza B, C and D Viruses (Orthomyxoviridae). , 2021, , 561-574.		15
12	Emergence and adaptive evolution of Nipah virus. Transboundary and Emerging Diseases, 2020, 67, 121-132.	1.3	15
13	Toward the identification of ZDHHC enzymes required for palmitoylation of viral protein as potential drug targets. Expert Opinion on Drug Discovery, 2020, 15, 159-177.	2.5	39
14	Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Binding to ACE2 Receptors from Human, Pets, Farm Animals, and Putative Intermediate Hosts. Journal of Virology, 2020, 94, .	1.5	148
15	Genomic Epidemiology, Evolution, and Transmission Dynamics of Porcine Deltacoronavirus. Molecular Biology and Evolution, 2020, 37, 2641-2654.	3.5	76
16	COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. Trends in Molecular Medicine, 2020, 26, 483-495.	3.5	470
17	Adaption and parallel evolution of human-isolated H5 avian influenza viruses. Journal of Infection, 2020, 80, 630-638.	1.7	10
18	Amphipathic Helices of Cellular Proteins Can Replace the Helix in M2 of Influenza A Virus with Only Small Effects on Virus Replication. Journal of Virology, 2020, 94, .	1.5	8

#	Article	IF	CITATIONS
19	Hemagglutinin of Influenza A, but not of Influenza B and C viruses is acylated by ZDHHC2, 8, 15 and 20. Biochemical Journal, 2020, 477, 285-303.	1.7	23
20	Photoactivable Cholesterol as a Tool to Study Interaction of Influenza Virus Hemagglutinin with Cholesterol. Bio-protocol, 2020, 10, e3523.	0.2	2
21	S-Acylation of Proteins. Methods in Molecular Biology, 2019, 1934, 265-291.	0.4	9
22	Mimicking the passage of avian influenza viruses through the gastrointestinal tract of chickens. Veterinary Microbiology, 2019, 239, 108462.	0.8	8
23	Differential S-acylation of Enveloped Viruses. Protein and Peptide Letters, 2019, 26, 588-600.	0.4	8
24	Cholesterol Binding to the Transmembrane Region of a Group 2 Hemagglutinin (HA) of Influenza Virus Is Essential for Virus Replication, Affecting both Virus Assembly and HA Fusion Activity. Journal of Virology, 2019, 93, .	1.5	25
25	Genetic Evolution and Molecular Selection of the HE Gene of Influenza C Virus. Viruses, 2019, 11, 167.	1.5	27
26	Interspecies Transmission, Genetic Diversity, and Evolutionary Dynamics of Pseudorabies Virus. Journal of Infectious Diseases, 2019, 219, 1705-1715.	1.9	101
27	Differences in signal peptide processing between GP3 glycoproteins of Arteriviridae. Virology, 2018, 517, 69-76.	1.1	4
28	Glycoprotein 3 of Porcine Reproductive and Respiratory Syndrome Virus Exhibits an Unusual Hairpin-Like Membrane Topology. Journal of Virology, 2018, 92, .	1.5	7
29	The complex co-translational processing of glycoprotein GP5 of type 1 porcine reproductive and respiratory syndrome virus. Virus Research, 2017, 240, 112-120.	1.1	5
30	Novel Influenza D virus: Epidemiology, pathology, evolution and biological characteristics. Virulence, 2017, 8, 1580-1591.	1.8	101
31	Influenza A virus nucleoprotein targets subnuclear structures. Cellular Microbiology, 2017, 19, e12679.	1.1	10
32	The role of stearate attachment to the hemagglutinin-esterase-fusion glycoprotein HEF of influenza C virus. Cellular Microbiology, 2016, 18, 692-704.	1.1	16
33	Modulation of cell surface transport and lipid raft localization by the cytoplasmic tail of the influenza virus hemagglutinin. Cellular Microbiology, 2016, 18, 125-136.	1.1	9
34	Hemagglutinin-esterase-fusion (HEF) protein of influenza C virus. Protein and Cell, 2016, 7, 28-45.	4.8	56
35	Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication. Viruses, 2015, 7, 6458-6475.	1.5	20
36	A cholesterol consensus motif is required for efficient intracellular transport and raft association of a group 2 HA from influenza virus. Biochemical Journal, 2015, 465, 305-314.	1.7	22

#	Article	IF	CITATIONS
37	S-acylation of influenza virus proteins: Are enzymes for fatty acid attachment promising drug targets?. Vaccine, 2015, 33, 7002-7007.	1.7	16
38	Alteration of Protein Levels during Influenza Virus H1N1 Infection in Host Cells: A Proteomic Survey of Host and Virus Reveals Differential Dynamics. PLoS ONE, 2014, 9, e94257.	1.1	38
39	Membrane proteins of arterivirus particles: Structure, topology, processing and function. Virus Research, 2014, 194, 16-36.	1.1	51
40	Site-specific S-Acylation of Influenza Virus Hemagglutinin. Journal of Biological Chemistry, 2014, 289, 34978-34989.	1.6	43
41	Signal peptide cleavage from GP3 enabled by removal of adjacent glycosylation sites does not impair replication of equine arteritis virus in cell culture, but the hydrophobic C-terminus is essential. Virus Research, 2014, 183, 107-111.	1.1	8
42	eGFP-pHsens as a highly sensitive fluorophore for cellular pH determination by fluorescence lifetime imaging microscopy (FLIM). Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1581-1593.	0.5	43
43	A Histidine Residue of the Influenza Virus Hemagglutinin Controls the pH Dependence of the Conformational Change Mediating Membrane Fusion. Journal of Virology, 2014, 88, 13189-13200.	1.5	32
44	Palmitoylation of the Alphacoronavirus TGEV spike protein S is essential for incorporation into virus-like particles but dispensable for S–M interaction. Virology, 2014, 464-465, 397-405.	1.1	23
45	The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization. Cellular Microbiology, 2014, 16, 1565-1581.	1.1	32
46	Acylation and cholesterol binding are not required for targeting of influenza A virus M2 protein to the hemagglutininâ€defined budozone. FEBS Letters, 2014, 588, 1031-1036.	1.3	17
47	Structural investigation of influenza virus hemagglutinin membrane-anchoring peptide. Protein Engineering, Design and Selection, 2013, 26, 547-552.	1.0	27
48	Mass spectrometry analysis of influenza virus reassortant clones does not reveal an influence of other viral proteins on S-acylation of hemagglutinin. Archives of Virology, 2013, 158, 467-472.	0.9	4
49	Lipid domain association of influenza virus proteins detected by dynamic fluorescence microscopy techniques. Cellular Microbiology, 2013, 15, 179-189.	1.1	21
50	Palmitoylation of influenza virus proteins. Biochemical Society Transactions, 2013, 41, 50-55.	1.6	46
51	Co-translational Processing of Glycoprotein 3 from Equine Arteritis Virus. Journal of Biological Chemistry, 2013, 288, 35396-35405.	1.6	15
52	Signal Peptide Cleavage from GP5 of PRRSV: A Minor Fraction of Molecules Retains the Decoy Epitope, a Presumed Molecular Cause for Viral Persistence. PLoS ONE, 2013, 8, e65548.	1.1	48
53	Folding and Oligomerization of the gp2b/gp3/gp4 Spike Proteins of Equine Arteritis Virus in Vitro. Viruses, 2012, 4, 414-423.	1.5	3
54	Growth of influenza A virus is not impeded by simultaneous removal of the cholesterol-binding and acylation sites in the M2 protein. Journal of General Virology, 2012, 93, 282-292.	1.3	25

#	Article	IF	CITATIONS
55	Palmitoylation of virus proteins. Biology of the Cell, 2012, 104, 493-515.	0.7	73
56	Mutation of a raftâ€ŧargeting signal in the transmembrane region retards transport of influenza virus hemagglutinin through the Golgi. FEBS Letters, 2012, 586, 277-282.	1.3	14
57	Linker and/or transmembrane regions of influenza A/Group-1, A/Group-2, and type B virus hemagglutinins are packed differently within trimers. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1843-1854.	1.4	38
58	Influenza virus hemagglutinin spike neck architectures and interaction with model enzymes evaluated by MALDI-TOF mass spectrometry and bioinformatics tools. Virus Research, 2011, 160, 294-304.	1.1	16
59	Intrinsic membrane association of the cytoplasmic tail of influenza virus M2 protein and lateral membrane sorting regulated by cholesterol binding and palmitoylation. Biochemical Journal, 2011, 437, 389-397.	1.7	52
60	Association of Influenza Virus Proteins with Membrane Rafts. Advances in Virology, 2011, 2011, 1-14.	0.5	91
61	FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts. Biochemical Journal, 2010, 425, 567-573.	1.7	76
62	Characterization of the self-palmitoylation activity of the transport protein particle component Bet3. Cellular and Molecular Life Sciences, 2010, 67, 2653-2664.	2.4	8
63	Viruses as vesicular carriers of the viral genome: A functional module perspective. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 507-519.	1.9	9
64	Site-specific attachment of palmitate or stearate to cytoplasmic versus transmembrane cysteines is a common feature of viral spike proteins. Virology, 2010, 398, 49-56.	1.1	38
65	Intrinsic Cytoskeleton-Dependent Clustering of Influenza Virus M2 Protein with Hemagglutinin Assessed by FLIM-FRET. Journal of Virology, 2010, 84, 12445-12449.	1.5	28
66	Hemagglutinin of Influenza Virus Partitions into the Nonraft Domain of Model Membranes. Biophysical Journal, 2010, 99, 489-498.	0.2	55
67	Lateral Distribution of the Transmembrane Domain of Influenza Virus Hemagglutinin Revealed by Time-resolved Fluorescence Imaging. Journal of Biological Chemistry, 2009, 284, 15708-15716.	1.6	73
68	Myristoylation of the arterivirus E protein: the fatty acid modification is not essential for membrane association but contributes significantly to virus infectivity. Journal of General Virology, 2009, 90, 2704-2712.	1.3	16
69	The polybasic region is not essential for membrane binding of the matrix protein M1 of influenza virus. Virology, 2009, 383, 150-155.	1.1	36
70	Characterization of equine arteritis virus particles and demonstration of their hemolytic activity. Archives of Virology, 2008, 153, 351-356.	0.9	3
71	Equine arteritis virus is delivered to an acidic compartment of host cells via clathrin-dependent endocytosis. Virology, 2008, 377, 248-254.	1.1	18
72	Electron Cryomicroscopy Reveals Different F1+F2 Protein States in Intact Parainfluenza Virions. Journal of Virology, 2008, 82, 3775-3781.	1.5	30

#	Article	IF	CITATIONS
73	S Acylation of the Hemagglutinin of Influenza Viruses: Mass Spectrometry Reveals Site-Specific Attachment of Stearic Acid to a Transmembrane Cysteine. Journal of Virology, 2008, 82, 9288-9292.	1.5	94
74	Analysis of S-Acylation of Proteins. , 2008, 446, 163-182.		21
75	The relevance of salt bridges for the stability of the influenza virus hemagglutinin. FASEB Journal, 2007, 21, 995-1002.	0.2	58
76	Unique self-palmitoylation activity of the transport protein particle component Bet3: A mechanism required for protein stability. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12701-12706.	3.3	46
77	Palmitoylation of influenza virus proteins. Berliner Und Munchener Tierarztliche Wochenschrift, 2006, 119, 112-22.	0.7	8
78	Intracellular interaction between syntaxin and Munc 18-1 revealed by fluorescence resonance energy transfer. Molecular Membrane Biology, 2005, 22, 401-410.	2.0	5
79	The SNARE Ykt6 mediates protein palmitoylation during an early stage of homotypic vacuole fusion. EMBO Journal, 2004, 23, 45-53.	3.5	72
80	The human SNARE protein Ykt6 mediates its own palmitoylation at C-terminal cysteine residues. Biochemical Journal, 2004, 384, 233-237.	1.7	22
81	Biochemical characterization of the vacuolar palmitoyl acyltransferase. FEBS Letters, 2003, 540, 101-105.	1.3	10
82	Palmitoylation sites and processing of synaptotagmin I, the putative calcium sensor for neurosecretion. FEBS Letters, 2003, 544, 57-62.	1.3	30
83	Functional characterization of palmitoylated and nonacylated SNAP-25 purified from insect cells infected with recombinant baculovirus. Molecular and Cellular Neurosciences, 2003, 23, 333-340.	1.0	7
84	Analysis of S-Acylation of Proteins. , 2002, 194, 159-178.		3
85	MOLECULAR CLONING, EXPRESSION AND CHARACTERIZATION OF THE CANIS FAMILIARIS INTERLEUKIN-4. Cytokine, 2001, 16, 88-92.	1.4	13
86	Enzymatic Depalmitoylation of Viral Glycoproteins with Acyl-Protein Thioesterase 1 in Vitro. Virology, 2001, 288, 89-95.	1.1	33
87	Palmitoylation of the 25-kDa synaptosomal protein (SNAP-25) in vitro occurs in the absence of an enzyme, but is stimulated by binding to syntaxin. Biochemical Journal, 2000, 345, 145.	1.7	26
88	Palmitoylation of the 25-kDa synaptosomal protein (SNAP-25) in vitro occurs in the absence of an enzyme, but is stimulated by binding to syntaxin. Biochemical Journal, 2000, 345, 145-151.	1.7	54
89	Synaptobrevin 2 Is Palmitoylated in Synaptic Vesicles Prepared from Adult, But Not from Embryonic Brain. Molecular and Cellular Neurosciences, 2000, 15, 408-416.	1.0	50
90	Palmitoylation of rhodopsin with S-protein acyltransferase: enzyme catalyzed reaction versus autocatalytic acylation. Lipids and Lipid Metabolism, 1998, 1394, 90-98.	2.6	47

#	Article	IF	CITATIONS
91	Membrane Targeting via Protein Palmitoylation. , 1998, 88, 227-240.		11
92	Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. FEBS Letters, 1996, 385, 119-123.	1.3	216
93	Deacylation of influenza virus hemagglutinin does not affect the kinetics of low pH induced membrane fusion. Pflugers Archiv European Journal of Physiology, 1996, 431, R257-R258.	1.3	2
94	Cytoplasmic tail length influences fatty acid selection for acylation of viral glycoproteins. Biochemical Journal, 1996, 318, 163-172.	1.7	56
95	Differential Fatty Acid Selection during Biosynthetic S-Acylation of a Transmembrane Protein (HEF) and Other Proteins in Insect Cells (Sf9) and in Mammalian Cells (CV1). Journal of Biological Chemistry, 1996, 271, 23607-23610.	1.6	24
96	Assessment of Fusogenic Properties of Influenza Virus Hemagglutinin Deacylated by Site-Directed Mutagenesis and Hydroxylamine Treatment. Virology, 1995, 210, 20-28.	1.1	28
97	The α-subunits of G-proteins G12and G13are palmitoylated, but not amidically myristoylated. FEBS Letters, 1994, 339, 160-164.	1.3	62
98	Timing of palmitoylation of influenza virus hemagglutinin. FEBS Letters, 1993, 336, 243-247.	1.3	52
99	Retarded processing of influenza virus hemagglutinin in insect cells. Virology, 1991, 180, 159-165.	1.1	57
100	The hemagglutinating glycoproteins of influenza B and C viruses are acylated with different fatty acids. Virology, 1990, 177, 807-811.	1.1	51
101	Different palmitoylation of paramyxovirus glycoproteins. Virology, 1989, 168, 173-176.	1.1	37