Valeria Nicolosi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6050419/publications.pdf

Version: 2024-02-01

18482 6836 38,980 160 62 155 citations h-index g-index papers 169 169 169 38858 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Additive Manufacturing of Ti ₃ C ₂ â€MXeneâ€Functionalized Conductive Polymer Hydrogels for Electromagneticâ€Interference Shielding. Advanced Materials, 2022, 34, e2106253.	21.0	115
2	Interfacial Engineered Vanadium Oxide Nanoheterostructures Synchronizing High-Energy and Long-Term Potassium-lon Storage. ACS Nano, 2022, 16, 1502-1510.	14.6	35
3	Growth and analysis of the tetragonal (ST12) germanium nanowires. Nanoscale, 2022, 14, 2030-2040.	5.6	3
4	One-Step Grown Carbonaceous Germanium Nanowires and Their Application as Highly Efficient Lithium-lon Battery Anodes. ACS Applied Energy Materials, 2022, 5, 1922-1932.	5.1	9
5	Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5525-5536.	8.0	7
6	Silver nanocolloid generation using dynamic Laser Ablation Synthesis in Solution system and drop-casting. Nano Structures Nano Objects, 2022, 29, 100841.	3.5	14
7	Quantifying the Effect of Separator Thickness on Rate Performance in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 030503.	2.9	17
8	Laser-powder bed fusion of silicon carbide reinforced 316L stainless steel using a sinusoidal laser scanning strategy. Journal of Materials Research and Technology, 2022, 18, 2672-2698.	5.8	12
9	Liquid phase exfoliation of nonlayered non-van der Waals iron trifluoride (FeF3) into 2D-platelets for high-capacity lithium storing cathodes. FlatChem, 2022, 33, 100360.	5.6	15
10	The potential of MXene materials as a component in the catalyst layer for the Oxygen Evolution Reaction. Current Opinion in Electrochemistry, 2022, 34, 101021.	4.8	5
11	Laser-powder bed fusion in-process dispersion of reinforcing ceramic nanoparticles onto powder beds via colloid nebulisation. Materials Chemistry and Physics, 2022, 287, 126245.	4.0	2
12	Two-dimensional material inks. Nature Reviews Materials, 2022, 7, 717-735.	48.7	71
13	Liquid Exfoliated SnP ₃ Nanosheets for Very High Areal Capacity Lithiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2002364.	19.5	40
14	Multifunctional Ti ₃ C ₂ T _{<i>x</i>} MXene Composite Hydrogels with Strain Sensitivity toward Absorption-Dominated Electromagnetic-Interference Shielding. ACS Nano, 2021, 15, 1465-1474.	14.6	194
15	Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nature Nanotechnology, 2021, 16, 592-598.	31.5	74
16	Solvent engineered synthesis of layered SnO for high-performance anodes. Npj 2D Materials and Applications, 2021, 5, .	7.9	11
17	MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43, 99-131.	14.2	107
18	TEM and EELS characterization of Ni–Fe layered double hydroxide decompositions caused by electron beam irradiation. Npj 2D Materials and Applications, 2021, 5, .	7.9	8

#	Article	IF	Citations
19	One-Dimensional (1D) Nanostructured Materials for Energy Applications. Materials, 2021, 14, 2609.	2.9	47
20	Inclusion of 2D Transition Metal Dichalcogenides in Perovskite Inks and Their Influence on Solar Cell Performance. Nanomaterials, 2021, 11, 1706.	4.1	7
21	Extending the Cyclability of Alkaline Zinc–Air Batteries: Synergistic Roles of Li ⁺ and K ⁺ lons in Electrodics. ACS Applied Materials & Interfaces, 2021, 13, 33112-33122.	8.0	11
22	Characterisation and Defect Analysis of 2D Layered Ternary Chalcogenides. Microscopy and Microanalysis, 2021, 27, 642-643.	0.4	0
23	Understanding Degradation Processes in MXene Anodes by In-situ Liquid Cell STEM. Microscopy and Microanalysis, 2021, 27, 1976-1977.	0.4	0
24	Postsynthetic treatment of nickel–iron layered double hydroxides for the optimum catalysis of the oxygen evolution reaction. Npj 2D Materials and Applications, 2021, 5, .	7.9	12
25	Oxygen evolution catalysts under proton exchange membrane conditions in a conventional three electrode cell <i>vs.</i> electrolyser device: a comparison study and a 3D-printed electrolyser for academic labs. Journal of Materials Chemistry A, 2021, 9, 9113-9123.	10.3	24
26	Transition metal nitrides for electrochemical energy applications. Chemical Society Reviews, 2021, 50, 1354-1390.	38.1	580
27	Temperature influence on Ti3C2Tx lines printed by aerosol jet printing. Sensors and Actuators A: Physical, 2021, 332, 113185.	4.1	9
28	2D nanosheets from fool's gold by LPE: High performance lithium-ion battery anodes made from stone. FlatChem, 2021, 30, 100295.	5.6	6
29	Charge transport mechanisms in inkjet-printed thin-film transistors based on two-dimensional materials. Nature Electronics, 2021, 4, 893-905.	26.0	52
30	Advanced materials of printed wearables for physiological parameter monitoring. Materials Today, 2020, 32, 147-177.	14.2	110
31	Quantifying the Dependence of Battery Rate Performance on Electrode Thickness. ACS Applied Energy Materials, 2020, 3, 10154-10163.	5.1	16
32	Quantifying the Effect of Electronic Conductivity on the Rate Performance of Nanocomposite Battery Electrodes. ACS Applied Energy Materials, 2020, 3, 2966-2974.	5.1	75
33	Improving stability of organometallic-halide perovskite solar cells using exfoliation two-dimensional molybdenum chalcogenides. Npj 2D Materials and Applications, 2020, 4, .	7.9	49
34	Production of Quasi-2D Platelets of Nonlayered Iron Pyrite (FeS ₂) by Liquid-Phase Exfoliation for High Performance Battery Electrodes. ACS Nano, 2020, 14, 13418-13432.	14.6	45
35	Layered Double Hydroxide as a Potent Non-viral Vector for Nucleic Acid Delivery Using Gene-Activated Scaffolds for Tissue Regeneration Applications. Pharmaceutics, 2020, 12, 1219.	4.5	26
36	Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. Energy and Environmental Science, 2020, 13, 2124-2133.	30.8	35

#	Article	IF	CITATIONS
37	3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Functional Materials, 2020, 30, 2000842.	14.9	276
38	All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors. Nano Energy, 2020, 75, 104971.	16.0	119
39	Using chronoamperometry to rapidly measure and quantitatively analyse rate-performance in battery electrodes. Journal of Power Sources, 2020, 468, 228220.	7.8	16
40	OD-1D Hybrid Silicon Nanocomposite as Lithium-Ion Batteries Anodes. Nanomaterials, 2020, 10, 515.	4.1	8
41	Twoâ€Photon Absorption in Monolayer MXenes. Advanced Optical Materials, 2020, 8, 1902021.	7.3	50
42	Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials, 2020, 239, 119833.	11.4	207
43	Silanization of Silica Nanoparticles and Their Processing as Nanostructured Microâ€Raspberry Powdersâ€"A Route to Control the Mechanical Properties of Isoprene Rubber Composites. Polymer Composites, 2019, 40, E732.	4.6	6
44	Synthesis of centimeter-size free-standing perovskite nanosheets from single-crystal lead bromide for optoelectronic devices. Scientific Reports, 2019, 9, 11738.	3.3	9
45	Sonochemical edge functionalisation of molybdenum disulfide. Nanoscale, 2019, 11, 15550-15560.	5 . 6	4
46	Selfâ€Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus. Advanced Functional Materials, 2019, 29, 1903120.	14.9	9
47	Quantifying the Tradeâ€Off between Absolute Capacity and Rate Performance in Battery Electrodes. Advanced Energy Materials, 2019, 9, 1901359.	19.5	43
48	The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioengineering, 2019, 3, 041501.	6.2	84
49	Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials, 2019, 197, 405-416.	11.4	146
50	High areal capacity battery electrodes enabled by segregated nanotube networks. Nature Energy, 2019, 4, 560-567.	39.5	281
51	High mobility solution processed MoS2 thin film transistors. Solid-State Electronics, 2019, 158, 75-84.	1.4	16
52	Quantifying the factors limiting rateÂperformance in battery electrodes. Nature Communications, 2019, 10, 1933.	12.8	185
53	Additive-free MXene inks and direct printing of micro-supercapacitors. Nature Communications, 2019, 10, 1795.	12.8	649
54	Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. Journal of Materials Chemistry A, 2019, 7, 9478-9485.	10.3	120

#	Article	IF	Citations
55	Liquid phase exfoliation of MoO ₂ nanosheets for lithium ion battery applications. Nanoscale Advances, 2019, 1, 1560-1570.	4.6	35
56	High capacity silicon anodes enabled by MXene viscous aqueous ink. Nature Communications, 2019, 10, 849.	12.8	253
57	Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Materials, 2019, 16, 102-125.	18.0	313
58	Structural transformation of layered double hydroxides: an in situ TEM analysis. Npj 2D Materials and Applications, 2018, 2, .	7.9	53
59	Microelectronics: Stamping of Flexible, Coplanar Microâ€6upercapacitors Using MXene Inks (Adv. Funct.) Tj ETQ	q1 ₁ 1,9.78	4314 rgBT /C
60	Oxide-mediated recovery of field-effect mobility in plasma-treated MoS ₂ . Science Advances, 2018, 4, eaao5031.	10.3	82
61	Solution processed thin film transistor from liquid phase exfoliated MoS2 flakes. Solid-State Electronics, 2018, 141, 58-64.	1.4	24
62	Stamping of Flexible, Coplanar Microâ€Supercapacitors Using MXene Inks. Advanced Functional Materials, 2018, 28, 1705506.	14.9	427
63	Novel in-situ lamella fabrication technique for in-situ TEM. Ultramicroscopy, 2018, 190, 21-29.	1.9	10
64	Low-temperature synthesis and investigation into the formation mechanism of high quality Ni-Fe layered double hydroxides hexagonal platelets. Scientific Reports, 2018, 8, 4179.	3.3	56
65	Percolating Metallic Structures Templated on Laser-Deposited Carbon Nanofoams Derived from Graphene Oxide: Applications in Humidity Sensing. ACS Applied Nano Materials, 2018, 1, 1828-1835.	5.0	12
66	TiO ₂ -Based Nanomaterials for the Production of Hydrogen and the Development of Lithium-Ion Batteries. Journal of Physical Chemistry B, 2018, 122, 972-983.	2.6	28
67	Orthopaedic implant materials drive M1 macrophage polarization in a spleen tyrosine kinase- and mitogen-activated protein kinase-dependent manner. Acta Biomaterialia, 2018, 65, 426-435.	8.3	39
68	Influence of temperature on morphological and optical properties of MoS2 layers as grown based on solution processed precursor. Thin Solid Films, 2018, 645, 38-44.	1.8	11
69	Enhanced thermoelectric performance of Bi–Sb–Te/Sb ₂ O ₃ nanocomposites by energy filtering effect. Journal of Materials Chemistry A, 2018, 6, 21341-21349.	10.3	116
70	Synthesis and Advanced Characterisation of Layered Platelets by Self-assembly of Long-chain Amines. Microscopy and Microanalysis, 2018, 24, 1566-1567.	0.4	0
71	Colloidal Core–Satellite Supraparticles via Preprogramed Burst of Nanostructured Microâ€Raspberry Particles. Particle and Particle Systems Characterization, 2018, 35, 1800096.	2.3	3
72	In Situ Formed Protective Barrier Enabled by Sulfur@Titanium Carbide (MXene) Ink for Achieving Highâ€Capacity, Long Lifetime Liâ€S Batteries. Advanced Science, 2018, 5, 1800502.	11.2	210

#	Article	IF	Citations
73	Characterizing the Calcination Behaviors of Ni-Fe Layered Double Hydroxide Materials via In-situ Transmission Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 1878-1879.	0.4	0
74	pH-Responsive Saloplastics Based on Weak Polyelectrolytes: From Molecular Processes to Material Scale Properties. Macromolecules, 2018, 51, 4424-4434.	4.8	15
75	Quantifying the Role of Nanotubes in Nano:Nano Composite Supercapacitor Electrodes. Advanced Energy Materials, 2018, 8, 1702364.	19.5	33
76	Novel cold spray for fabricating graphene-reinforced metal matrix composites. Materials Letters, 2017, 196, 172-175.	2.6	36
77	Probing the local nature of excitons and plasmons in few-layer MoS2. Npj 2D Materials and Applications, 2017, 1 , .	7.9	58
78	Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chemistry of Materials, 2017, 29, 4848-4856.	6.7	1,120
79	All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science, 2017, 356, 69-73.	12.6	391
80	Improving the performance of porous nickel foam for water oxidation using hydrothermally prepared Ni and Fe metal oxides. Sustainable Energy and Fuels, 2017, 1, 207-216.	4.9	38
81	Lithium Titanate/Carbon Nanotubes Composites Processed by Ultrasound Irradiation as Anodes for Lithium Ion Batteries. Scientific Reports, 2017, 7, 7614.	3.3	17
82	Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Advanced Materials, 2017, 29, 1702678.	21.0	756
83	Synthesis of layered platelets by self-assembly of rhenium-based clusters directed by long-chain amines. Npj 2D Materials and Applications, 2017, 1, .	7.9	3
84	Enabling Flexible Heterostructures for Liâ€lon Battery Anodes Based on Nanotube and Liquidâ€Phase Exfoliated 2D Gallium Chalcogenide Nanosheet Colloidal Solutions. Small, 2017, 13, 1701677.	10.0	71
85	An in situ and ex situ TEM study into the oxidation of titanium (IV) sulphide. Npj 2D Materials and Applications, 2017, 1 , .	7.9	21
86	Valence band modification of Cr ₂ O ₃ by Ni-doping: creating a high figure of merit p-type TCO. Journal of Materials Chemistry C, 2017, 5, 12610-12618.	5.5	36
87	In-situ TEM Analyses over FIB Lamellae - Investigating High Temperature Conversion of Solution Processed Mo-precursor to MoS ₂ Semiconductor Films Microscopy and Microanalysis, 2017, 23, 258-259.	0.4	1
88	Rhenium-doped MoS2 films. Applied Physics Letters, 2017, 111, .	3.3	40
89	Direct atomic scale determination of magnetic ion partition in a room temperature multiferroic material. Scientific Reports, 2017, 7, 1737.	3.3	32
90	Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: High capacity and rate handling Li-ion battery cathodes. Nano Energy, 2017, 39, 151-161.	16.0	123

#	Article	IF	Citations
91	An investigation of the energy storage properties of a 2D $\langle i \rangle \hat{l} \pm \langle i \rangle$ -MoO $\langle sub \rangle 3 \langle sub \rangle$ -SWCNTs composite films. 2D Materials, 2017, 4, 015005.	4.4	20
92	EELS probing of lithium based 2-D battery compounds processed by liquid phase exfoliation. Nano Energy, 2016, 30, 18-26.	16.0	8
93	Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy, 2016, 28, 495-505.	16.0	247
94	Pushing up the magnetisation values for iron oxide nanoparticles via zinc doping: X-ray studies on the particle's sub-nano structure of different synthesis routes. Physical Chemistry Chemical Physics, 2016, 18, 25221-25229.	2.8	27
95	Hollow Superparamagnetic Microballoons from Lifelike, Self-Directed Pickering Emulsions Based on Patchy Nanoparticles. ACS Nano, 2016, 10, 10347-10356.	14.6	6
96	Layered Orthorhombic Nb ₂ O ₅ @Nb ₄ C ₃ T <i>>_x</i> and TiO ₂ @Ti ₃ C ₂ T <i>>_x</i> Hierarchical Composites for High Performance Liâ€ion Batteries. Advanced Functional Materials, 2016, 26, 4143-4151.	14.9	309
97	Production of Ni(OH) < sub > 2 < /sub > nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11046-11059.	10.3	71
98	A comparison of catabolic pathways induced in primary macrophages by pristine single walled carbon nanotubes and pristine graphene. RSC Advances, 2016, 6, 65299-65310.	3.6	13
99	A study of the charge storage properties of a MoSe2 nanoplatelets/SWCNTs electrode in a Li-ion based electrolyte. Electrochimica Acta, 2016, 192, 1-7.	5.2	44
100	A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. ACS Nano, 2016, 10, 3702-3713.	14.6	394
101	Electronic structure of purified Mo6S(9â^x)lx nanowires studied by X-ray spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2016, 207, 29-33.	1.7	0
102	Study Using Low-loss EELS to Compare Properties of TMDs Produced by Mechanical and Liquid Phase Exfoliation. Microscopy and Microanalysis, 2015, 21, 1475-1476.	0.4	2
103	Electronic Properties and Chemical Reactivity of TiS ₂ Nanoflakes. Journal of Physical Chemistry C, 2015, 119, 15707-15715.	3.1	47
104	Manganese oxide nanosheets and a 2D hybrid of graphene–manganese oxide nanosheets synthesized by liquid-phase exfoliation. 2D Materials, 2015, 2, 025005.	4.4	28
105	A 2D graphene-manganese oxide nanosheet hybrid synthesized by a single step liquid-phase co-exfoliation method for supercapacitor applications. Electrochimica Acta, 2015, 174, 696-705.	5.2	47
106	Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. ACS Nano, 2015, 9, 6018-6030.	14.6	293
107	Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application As Hydrogen Evolution Catalysts. Chemistry of Materials, 2015, 27, 3483-3493.	6.7	195
108	Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015, 6, 8563.	12.8	921

7

#	Article	IF	Citations
109	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	5.6	2,452
110	Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 2014, 13, 624-630.	27.5	1,958
111	Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation. ACS Nano, 2014, 8, 4836-4847.	14.6	66
112	A safe-by-design approach to the development of gold nanoboxes as carriers for internalization into cancer cells. Biomaterials, 2014, 35, 2543-2557.	11.4	41
113	Production of Molybdenum Trioxide Nanosheets by Liquid Exfoliation and Their Application in High-Performance Supercapacitors. Chemistry of Materials, 2014, 26, 1751-1763.	6.7	266
114	Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nature Communications, 2014, 5, 4576.	12.8	432
115	Effect of Percolation on the Capacitance of Supercapacitor Electrodes Prepared from Composites of Manganese Dioxide Nanoplatelets and Carbon Nanotubes. ACS Nano, 2014, 8, 9567-9579.	14.6	89
116	Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors. Physical Chemistry Chemical Physics, 2014, 16, 2280.	2.8	87
117	Unusual Stacking Variations in Liquid-Phase Exfoliated Transition Metal Dichalcogenides. ACS Nano, 2014, 8, 3690-3699.	14.6	43
118	Atomic scale dynamics of a solid state chemical reaction directly determined by annular dark-field electron microscopy. Scientific Reports, 2014, 4, 7555.	3.3	26
119	Liquid Exfoliation of Layered Materials. Science, 2013, 340, .	12.6	3,109
120	Scaleable ultra-thin and high power density graphene electrochemical capacitor electrodes manufactured by aqueous exfoliation and spray deposition. Carbon, 2013, 52, 337-346.	10.3	47
121	Impurity induced non-bulk stacking in chemically exfoliated h-BN nanosheets. Nanoscale, 2013, 5, 2290.	5.6	20
122	An investigation of nanostructured thin film \hat{l}_{\pm} -MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochimica Acta, 2013, 91, 253-260.	5.2	177
123	High Quality Dispersions of Hexabenzocoronene in Organic Solvents. Journal of the American Chemical Society, 2012, 134, 12168-12179.	13.7	49
124	Single-step exfoliation and chemical functionalisation of graphene and hBN nanosheets with nickel phthalocyanine. Journal of Materials Chemistry, 2012, 22, 23246.	6.7	14
125	Covalently Functionalized Hexagonal Boron Nitride Nanosheets by Nitrene Addition. Chemistry - A European Journal, 2012, 18, 10808-10812.	3.3	75
126	Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011, 331, 568-571.	12.6	6,190

#	Article	IF	CITATIONS
127	Controlled Radiation Damage and Edge Structures in Boron Nitride Membranes. ACS Nano, 2011, 5, 3977-3986.	14.6	33
128	Largeâ€Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Advanced Materials, 2011, 23, 3944-3948.	21.0	1,012
129	A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Research, 2010, 3, 653-660.	10.4	351
130	Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy, 2010, 110, 935-945.	1.9	174
131	Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature, 2010, 464, 571-574.	27.8	1,138
132	Brownian Motion of Graphene. ACS Nano, 2010, 4, 7515-7523.	14.6	194
133	Bonding States in Molecular-Scale MoSI Nanowireâ^'Gold Nanoparticle Networks. Journal of Physical Chemistry Letters, 2010, 1, 393-397.	4.6	6
134	Edge-carboxylated graphene nanoflakes from nitric acid oxidised arc-discharge material. Journal of Materials Chemistry, 2010, 20, 314-319.	6.7	41
135	A facile route to self-assembled Hg//MoSI nanowire networks. New Journal of Chemistry, 2010, 34, 2241.	2.8	0
136	Gas phase controlled deposition of high quality large-area graphene films. Chemical Communications, 2010, 46, 1422.	4.1	42
137	Processing and characterisation of Mo ₆ S ₂ I ₈ nanowires. Physical Chemistry Chemical Physics, 2010, 12, 433-441.	2.8	3
138	Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. Journal of the American Chemical Society, 2009, 131, 3611-3620.	13.7	2,038
139	Towards Solutions of Singleâ€Walled Carbon Nanotubes in Common Solvents. Advanced Materials, 2008, 20, 1876-1881.	21.0	333
140	Spectroscopic evidence of a core–shell structure in the earlier formation stages of Au–Ag nanoparticles by pulsed laser ablation in water. Chemical Physics Letters, 2008, 457, 386-390.	2.6	60
141	High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3, 563-568.	31.5	5,431
142	Comparison of carbon nanotubes and nanodisks as percolative fillers in electrically conductive composites. Scripta Materialia, 2008, 58, 69-72.	5.2	56
143	Quantitative Evaluation of Surfactant-stabilized Single-walled Carbon Nanotubes: Dispersion Quality and Its Correlation with Zeta Potential. Journal of Physical Chemistry C, 2008, 112, 10692-10699.	3.1	343
144	Large Populations of Individual Nanotubes in Surfactant-Based Dispersions without the Need for Ultracentrifugation. Journal of Physical Chemistry C, 2008, 112, 972-977.	3.1	75

9

#	Article	IF	CITATIONS
145	Ordered DNA Wrapping Switches on Luminescence in Single-Walled Nanotube Dispersions. Journal of the American Chemical Society, 2008, 130, 12734-12744.	13.7	119
146	High Quality Dispersions of Functionalized Single Walled Nanotubes at High Concentration. Journal of Physical Chemistry C, 2008, 112, 3519-3524.	3.1	56
147	Spontaneous Exfoliation of Single-Walled Carbon Nanotubes Dispersed Using a Designed Amphiphilic Peptide. Biomacromolecules, 2008, 9, 598-602.	5.4	32
148	Efficient dispersion and exfoliation of single-walled nanotubes in 3-aminopropyltriethoxysilane and its derivatives. Nanotechnology, 2008, 19, 485702.	2.6	6
149	The relationship between network morphology and conductivity in nanotube films. Journal of Applied Physics, 2008, 104, .	2.5	119
150	Dispersion and purification of Mo6S3I6 nanowires in organic solvents. Journal of Applied Physics, 2007, 101, 014317.	2.5	35
151	Spontaneous Debundling of Single-Walled Carbon Nanotubes in DNA-Based Dispersions. Journal of Physical Chemistry C, 2007, 111, 66-74.	3.1	93
152	Fabrication and Characterization of Silver/Polyaniline Composite Nanowires in Porous Anodic Alumina. Chemistry of Materials, 2007, 19, 4252-4258.	6.7	123
153	Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone. Nanotechnology, 2007, 18, 455705.	2.6	45
154	Nonlinear optical response of Mo6S4.5I4.5 nanowires. Chemical Physics Letters, 2007, 435, 109-113.	2.6	15
155	Laser synthesis of Au/Ag colloidal nano-alloys: Optical properties, structure and composition. Applied Surface Science, 2007, 254, 1007-1011.	6.1	76
156	Debundling of Single-Walled Nanotubes by Dilution:Â Observation of Large Populations of Individual Nanotubes in Amide Solvent Dispersions. Journal of Physical Chemistry B, 2006, 110, 15708-15718.	2.6	330
157	Mo6S4.514.5Nanowires: Structure Studies by HRTEM and Aberration Corrected STEM. Journal of Physics: Conference Series, 2006, 26, 260-263.	0.4	2
158	Debundling by dilution: Observation of significant populations of individual MoSI nanowires in high concentration dispersions. Chemical Physics Letters, 2006, 425, 89-93.	2.6	28
159	Solubility of Mo6S4.5I4.5 nanowires. Chemical Physics Letters, 2005, 401, 13-18.	2.6	55
160	Solubility of Mo6S4.5I4.5Nanowires in Common Solvents:Â A Sedimentation Study. Journal of Physical Chemistry B, 2005, 109, 7124-7133.	2.6	105