Michael S Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6049912/publications.pdf Version: 2024-02-01

MICHAEL S COHEN

#	Article	IF	CITATIONS
1	Biosensor reveals multiple sources for mitochondrial NAD ⁺ . Science, 2016, 352, 1474-1477.	12.6	308
2	Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 1262-1271.	6.4	262
3	Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nature Chemical Biology, 2018, 14, 236-243.	8.0	224
4	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	4.7	150
5	Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity. Journal of Biological Chemistry, 2020, 295, 17986-17996.	3.4	132
6	Engineering the Substrate Specificity of ADP-Ribosyltransferases for Identifying Direct Protein Targets. Journal of the American Chemical Society, 2014, 136, 5201-5204.	13.7	107
7	Reversible ADP-ribosylation of RNA. Nucleic Acids Research, 2019, 47, 5658-5669.	14.5	106
8	ADP-ribosyl–binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10457-E10466.	7.1	99
9	Pharmacological bypass of NAD ⁺ salvage pathway protects neurons from chemotherapy-induced degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10654-10659.	7.1	92
10	Identifying Family-Member-Specific Targets of Mono-ARTDs by Using a Chemical Genetics Approach. Cell Reports, 2016, 14, 621-631.	6.4	75
11	Interplay between compartmentalized NAD ⁺ synthesis and consumption: a focus on the PARP family. Genes and Development, 2020, 34, 254-262.	5.9	64
12	Combining Chemical Genetics with Proximity-Dependent Labeling Reveals Cellular Targets of Poly(ADP-ribose) Polymerase 14 (PARP14). ACS Chemical Biology, 2018, 13, 2841-2848.	3.4	50
13	A Potent and Selective PARP11 Inhibitor Suggests Coupling between Cellular Localization and Catalytic Activity. Cell Chemical Biology, 2018, 25, 1547-1553.e12.	5.2	50
14	Chemical genetics and proteome-wide site mapping reveal cysteine MARylation by PARP-7 on immune-relevant protein targets. ELife, 2021, 10, .	6.0	43
15	Cell-specific Profiling of Nascent Proteomes Using Orthogonal Enzyme-mediated Puromycin Incorporation. ACS Chemical Biology, 2016, 11, 1532-1536.	3.4	41
16	A Clickable Aminooxy Probe for Monitoring Cellular ADP-Ribosylation. ACS Chemical Biology, 2015, 10, 1778-1784.	3.4	34
17	Selective inhibition of PARP10 using a chemical genetics strategy. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4770-4773.	2.2	25
18	Rational Design of Cell-Active Inhibitors of PARP10. ACS Medicinal Chemistry Letters, 2019, 10, 74-79.	2.8	25

MICHAEL S COHEN

#	Article	IF	CITATIONS
19	A novel class of cardioprotective small-molecule PTP inhibitors. Pharmacological Research, 2020, 151, 104548.	7.1	23
20	PARP6 is a Regulator of Hippocampal Dendritic Morphogenesis. Scientific Reports, 2016, 6, 18512.	3.3	21
21	Mechanisms governing PARP expression, localization, and activity in cells. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 541-554.	5.2	20
22	Small-Molecule Inhibitors of PARPs: From Tools for Investigating ADP-Ribosylation to Therapeutics. Current Topics in Microbiology and Immunology, 2018, 420, 211-231.	1.1	19
23	Treatment with a triazole inhibitor of the mitochondrial permeability transition pore fully corrects the pathology of sapje zebrafish lacking dystrophin. Pharmacological Research, 2021, 165, 105421.	7.1	19
24	The non-canonical target PARP16 contributes to polypharmacology of the PARP inhibitor talazoparib and its synergy with WEE1 inhibitors. Cell Chemical Biology, 2022, 29, 202-214.e7.	5.2	19
25	Secondâ€Generation Inhibitors of the Mitochondrial Permeability Transition Pore with Improved Plasma Stability. ChemMedChem, 2019, 14, 1771-1782.	3.2	18
26	Chemical Proteomics Approach for Profiling the NAD Interactome. Journal of the American Chemical Society, 2021, 143, 6787-6791.	13.7	18
27	Identifying Direct Protein Targets of Polyâ€ADPâ€Ribose Polymerases (PARPs) Using Engineered PARP Variants—Orthogonal Nicotinamide Adenine Dinucleotide (NAD ⁺) Analog Pairs. Current Protocols in Chemical Biology, 2015, 7, 121-139.	1.7	18
28	Chemical genetic methodologies for identifying protein substrates of PARPs. Trends in Biochemical Sciences, 2022, 47, 390-402.	7.5	11
29	Mitochondrial Permeability Transition Causes Mitochondrial Reactive Oxygen Species- and Caspase 3-Dependent Atrophy of Single Adult Mouse Skeletal Muscle Fibers. Cells, 2021, 10, 2586.	4.1	9
30	A Sort-Seq Approach to the Development of Single Fluorescent Protein Biosensors. ACS Chemical Biology, 2021, 16, 1709-1720.	3.4	8
31	PASTA: PARP activity screening and inhibitor testing assay. STAR Protocols, 2021, 2, 100344.	1.2	7
32	Characterization of PARP6 Function in Knockout Mice and Patients with Developmental Delay. Cells, 2021, 10, 1289.	4.1	7
33	Methods for Using a Genetically Encoded Fluorescent Biosensor to Monitor Nuclear NAD+. Methods in Molecular Biology, 2018, 1813, 391-414.	0.9	6
34	Detecting Protein ADP-Ribosylation Using a Clickable Aminooxy Probe. Methods in Molecular Biology, 2017, 1608, 71-77.	0.9	6
35	Rational design of selective inhibitors of PARP4. RSC Medicinal Chemistry, 2021, 12, 1950-1957.	3.9	5
36	Axon Degeneration: Too Much NMN Is Actually Bad?. Current Biology, 2017, 27, R310-R312.	3.9	4

MICHAEL S COHEN

#	Article	IF	CITATIONS
37	Fondation Leducq Transatlantic Network of Excellence Targeting Mitochondria to Treat Heart Disease. Circulation Research, 2019, 124, 1294-1296.	4.5	4
38	Flow Cytometry Analysis of Free Intracellular NAD + Using a Targeted Biosensor. Current Protocols in Cytometry, 2019, 88, e54.	3.7	4
39	Small Molecules Targeting PTPÏf–Trk Interactions Promote Sympathetic Nerve Regeneration. ACS Chemical Neuroscience, 2022, 13, 688-699.	3.5	4
40	Catching mono- and poly-ADP-ribose readers with synthetic ADP-ribose baits. Molecular Cell, 2021, 81, 4351-4353.	9.7	3
41	Molecular-Scale Dynamics of Long Range Retrograde Brain-Derived Neurotrophic Factor Transport Shaped by Cellular Spatial Context. Frontiers in Neuroscience, 2022, 16, 835815.	2.8	3
42	A Simple, Sensitive, and Generalizable Plate Assay for Screening PARP Inhibitors. Methods in Molecular Biology, 2018, 1813, 245-252.	0.9	2
43	Methods for profiling the target and off-target landscape of PARP inhibitors. Current Research in Chemical Biology, 2022, 2, 100027.	2.9	2