Irit Akirav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6048505/publications.pdf

Version: 2024-02-01

53	3,161	30	51
papers	citations	h-index	g-index
54	54	54	3193
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Role of the Medial Prefrontal Cortex-Amygdala Circuit in Stress Effects on the Extinction of Fear. Neural Plasticity, 2007, 2007, 1-11.	2.2	209
2	Mechanisms of Amygdala Modulation of Hippocampal Plasticity. Journal of Neuroscience, 2002, 22, 9912-9921.	3.6	206
3	Ventromedial Prefrontal Cortex Is Obligatory for Consolidation and Reconsolidation of Object Recognition Memory. Cerebral Cortex, 2005, 16, 1759-1765.	2.9	184
4	Emotional tagging of memory formationâ€"in the search for neural mechanisms. Brain Research Reviews, 2003, 43, 247-256.	9.0	175
5	Cannabinoids modulate hippocampal memory and plasticity. Hippocampus, 2010, 20, 1126-1138.	1.9	164
6	Cannabinoid Receptor Activation in the Basolateral Amygdala Blocks the Effects of Stress on the Conditioning and Extinction of Inhibitory Avoidance. Journal of Neuroscience, 2009, 29, 11078-11088.	3.6	155
7	A Facilitative Role for Corticosterone in the Acquisition of a Spatial Task Under Moderate Stress. Learning and Memory, 2004, 11, 188-195.	1.3	149
8	Amygdala-Hippocampus Dynamic Interaction in Relation to Memory. Molecular Neurobiology, 2000, 22, 011-020.	4.0	146
9	Differential activation of hippocampus and amygdala following spatial learning under stress. European Journal of Neuroscience, 2001, 14, 719-725.	2.6	117
10	Arousal and Stress Effects on Consolidation and Reconsolidation of Recognition Memory. Neuropsychopharmacology, 2008, 33, 394-405.	5.4	116
11	Cannabinoids Prevent the Development of Behavioral and Endocrine Alterations in a Rat Model of Intense Stress. Neuropsychopharmacology, 2012, 37, 456-466.	5.4	106
12	Short- and Long-Term Cognitive Effects of Chronic Cannabinoids Administration in Late-Adolescence Rats. PLoS ONE, 2012, 7, e31731.	2.5	100
13	The Role of Cannabinoids in Modulating Emotional and Non-Emotional Memory Processes in the Hippocampus. Frontiers in Behavioral Neuroscience, 2011, 5, 34.	2.0	91
14	Cannabinoids and traumatic stress modulation of contextual fear extinction and GR expression in the amygdala-hippocampal-prefrontal circuit. Psychoneuroendocrinology, 2013, 38, 1675-1687.	2.7	89
15	Cannabinoid Receptor Activation Prevents the Effects of Chronic Mild Stress on Emotional Learning and LTP in a Rat Model of Depression. Neuropsychopharmacology, 2014, 39, 919-933.	5.4	71
16	Cannabinoids Ameliorate Impairments Induced by Chronic Stress to Synaptic Plasticity and Short-Term Memory. Neuropsychopharmacology, 2013, 38, 1521-1534.	5.4	64
17	Stress modulation of reconsolidation. Psychopharmacology, 2013, 226, 747-761.	3.1	63
18	Role of endocannabinoids in the hippocampus and amygdala in emotional memory and plasticity. Neuropsychopharmacology, 2018, 43, 2017-2027.	5.4	56

#	Article	IF	CITATIONS
19	Cannabinoids and glucocorticoids modulate emotional memory after stress. Neuroscience and Biobehavioral Reviews, 2013, 37, 2554-2563.	6.1	55
20	Cannabinoids Prevent the Effects of a Footshock Followed by Situational Reminders on Emotional Processing. Neuropsychopharmacology, 2014, 39, 2709-2722.	5.4	53
21	D-Cycloserine into the BLA reverses the impairing effects of exposure to stress on the extinction of contextual fear, but not conditioned taste aversion. Learning and Memory, 2009, 16, 682-686.	1.3	48
22	Chronic treatment with URB597 ameliorates post-stress symptoms in a rat model of PTSD. European Neuropsychopharmacology, 2018, 28, 630-642.	0.7	48
23	Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood. Learning and Memory, 2016, 23, 349-358.	1.3	47
24	Targeting the endocannabinoid system to treat anxiety-related disorders. Journal of Basic and Clinical Physiology and Pharmacology, 2016, 27, 193-202.	1.3	45
25	Sex differences in hippocampal response to endocannabinoids after exposure to severe stress. Hippocampus, 2016, 26, 947-957.	1.9	43
26	Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 129-139.	4.8	40
27	NMDA Partial Agonist Reverses Blocking of Extinction of Aversive Memory by GABAA Agonist in the Amygdala. Neuropsychopharmacology, 2007, 32, 542-550.	5.4	39
28	Cannabinoids and post-traumatic stress disorder: clinical and preclinical evidence for treatment and prevention. Behavioural Pharmacology, 2016, 27, 561-569.	1.7	39
29	Differential effects of cannabinoid receptor agonist on social discrimination and contextual fear in amygdala and hippocampus. Learning and Memory, 2011, 18, 254-259.	1.3	38
30	Cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala prevent the stress-induced enhancement of a negative learning experience. Neurobiology of Learning and Memory, 2012, 97, 393-401.	1.9	36
31	Cannabinoids as therapeutics for PTSD. , 2020, 211, 107551.		32
32	Stress Hormones Receptors in the Amygdala Mediate the Effects of Stress on the Consolidation, but Not the Retrieval, of a Non Aversive Spatial Task. PLoS ONE, 2012, 7, e29988.	2.5	29
33	Cannabinoids prevent the differential longâ€term effects of exposure to severe stress on hippocampal― and amygdalaâ€dependent memory and plasticity. Hippocampus, 2017, 27, 1093-1109.	1.9	29
34	The involvement of cannabinoids and mTOR in the reconsolidation of an emotional memory in the hippocampal–amygdala–insular circuit. European Neuropsychopharmacology, 2017, 27, 336-349.	0.7	25
35	The effects of enhancing endocannabinoid signaling and blocking corticotrophin releasing factor receptor in the amygdala and hippocampus on the consolidation of a stressful event. European Neuropsychopharmacology, 2017, 27, 913-927.	0.7	24
36	Antidepressant-like effects of URB597 and JZL184 in male and female rats exposed to early life stress. European Neuropsychopharmacology, 2020, 39, 70-86.	0.7	23

#	Article	IF	Citations
37	The effects of cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala and hippocampus on the consolidation of a traumatic event. Neurobiology of Learning and Memory, 2017, 144, 248-258.	1.9	22
38	Role of beta-catenin and endocannabinoids in the nucleus accumbens in extinction in rats exposed to shock and reminders. Neuroscience, 2017, 357, 285-294.	2.3	21
39	Changes in Gene Expression in the Locus Coeruleus-Amygdala Circuitry in Inhibitory Avoidance PTSD Model. Cellular and Molecular Neurobiology, 2018, 38, 273-280.	3.3	21
40	Cannabinoids and Glucocorticoids in the Basolateral Amygdala Modulate Hippocampal–Accumbens Plasticity After Stress. Neuropsychopharmacology, 2016, 41, 1066-1079.	5.4	20
41	Factors That Determine the Non-Linear Amygdala Influence on Hippocampus-Dependent Memory. Dose-Response, 2006, 4, dose-response.0.	1.6	19
42	Differential roles of the infralimbic and prelimbic areas of the prefrontal cortex in reconsolidation of a traumatic memory. European Neuropsychopharmacology, 2017, 27, 900-912.	0.7	16
43	Chronic exposure to cannabinoids before an emotional trauma may have negative effects on emotional function. European Neuropsychopharmacology, 2018, 28, 955-969.	0.7	13
44	Inhibition of Fatty Acid Amide Hydrolase (FAAH) During Adolescence and Exposure to Early Life Stress may Exacerbate Depression-like Behaviors in Male and Female Rats. Neuroscience, 2021, 455, 89-106.	2.3	13
45	Neuropeptide Y and cannabinoids interaction in the amygdala after exposure to shock and reminders model of PTSD. Neuropharmacology, 2020, 162, 107804.	4.1	10
46	Rapamycin prevents the longâ€term impairing effects of adolescence Δâ€9â€tetrahydrocannabinol on memory and plasticity in male rats. European Journal of Neuroscience, 2021, 54, 6104-6122.	2.6	10
47	Modulation of Endocannabinoid System Components in Depression: Pre-Clinical and Clinical Evidence. International Journal of Molecular Sciences, 2022, 23, 5526.	4.1	9
48	Targeting the endocannabinoid system to treat haunting traumatic memories. Frontiers in Behavioral Neuroscience, 2013, 7, 124.	2.0	8
49	Cannabinoid CB1 and Dopamine D1 Receptors Partnership in the Modulation of Emotional Neural Processing. Frontiers in Behavioral Neuroscience, 2011, 5, 67.	2.0	7
50	Prefrontal tetanic stimulation, following fear reconditioning, facilitates expression of previously acquired extinction. Neurobiology of Learning and Memory, 2014, 113, 62-68.	1.9	6
51	Anandamide Hydrolysis Inhibition Reverses the Long-Term Behavioral and Gene Expression Alterations Induced by MK-801 in Male Rats: Differential CB1 and CB2 Receptor-Mediated Effects. Schizophrenia Bulletin, 2022, 48, 795-803.	4.3	6
52	Do Adolescent Exposure to Cannabinoids and Early Adverse Experience Interact to Increase the Risk of Psychiatric Disorders: Evidence from Rodent Models. International Journal of Molecular Sciences, 2021, 22, 730.	4.1	4
53	Cannabinoids Modulation of Emotional and Non-Emotional Memory Processes After Stress. , 2015, , 23-43.		2