List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6047907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Summary on the Genetics of Systemic Lupus Erythematosus, Rheumatoid Arthritis, Systemic Sclerosis, and Sj¶gren's Syndrome. Clinical Reviews in Allergy and Immunology, 2023, 64, 392-411.	2.9	12
2	PeacoQC: Peakâ€based selection of high quality cytometry data. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 325-338.	1.1	24
3	SIDT1 plays a key role in type I IFN responses to nucleic acids in plasmacytoid dendritic cells and mediates the pathogenesis of an imiquimod-induced psoriasis model. EBioMedicine, 2022, 76, 103808.	2.7	10
4	A glimpse into the future of systemic lupus erythematosus. Therapeutic Advances in Musculoskeletal Disease, 2022, 14, 1759720X2210867.	1.2	14
5	Transcriptome Studies in Lupus Nephritis. Archivum Immunologiae Et Therapiae Experimentalis, 2022, 70, 15.	1.0	0
6	Novel genes and sex differences in COVID-19 severity. Human Molecular Genetics, 2022, 31, 3789-3806.	1.4	38
7	A survey of gene expression meta-analysis: methods and applications. Briefings in Bioinformatics, 2021, 22, 1694-1705.	3.2	47
8	Stabilization of Human Whole Blood Samples for Multicenter and Retrospective Immunophenotyping Studies. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 524-537.	1.1	4
9	Integrative Analysis Reveals a Molecular Stratification of Systemic Autoimmune Diseases. Arthritis and Rheumatology, 2021, 73, 1073-1085.	2.9	81
10	An elevated polyclonal free light chain level reflects a strong interferon signature in patients with systemic autoimmune diseases. Journal of Translational Autoimmunity, 2021, 4, 100090.	2.0	15
11	Data processing workflow for large-scale immune monitoring studies by mass cytometry. Computational and Structural Biotechnology Journal, 2021, 19, 3160-3175.	1.9	7
12	Transcription Factor Activity Inference in Systemic Lupus Erythematosus. Life, 2021, 11, 299.	1.1	5
13	Expression Quantitative Trait Locus Analysis in Systemic Sclerosis Identifies New Candidate Genes Associated With Multiple Aspects of Disease Pathology. Arthritis and Rheumatology, 2021, 73, 1288-1300.	2.9	9
14	B Cells and Microbiota in Autoimmunity. International Journal of Molecular Sciences, 2021, 22, 4846.	1.8	15
15	The Role of BANK1 in B Cell Signaling and Disease. Cells, 2021, 10, 1184.	1.8	20
16	Precision medicine in autoimmune diseases: fact or fiction. Rheumatology, 2021, 60, 3977-3985.	0.9	8
17	The trans-ancestral genomic architecture of glycemic traits. Nature Genetics, 2021, 53, 840-860.	9.4	341
18	The heterogeneity of systemic lupus erythematosus: Looking for a molecular answer. Revista Colombiana De ReumatologÃa, 2021, 28, 31-38.	0.0	1

#	Article	IF	CITATIONS
19	A comprehensive database for integrated analysis of omics data in autoimmune diseases. BMC Bioinformatics, 2021, 22, 343.	1.2	12
20	A new molecular classification to drive precision treatment strategies in primary Sjögren's syndrome. Nature Communications, 2021, 12, 3523.	5.8	67
21	Continental-scale genomic analysis suggests shared post-admixture adaptation in the Americas. Human Molecular Genetics, 2021, 30, 2123-2134.	1.4	6
22	A Proinflammatory Cytokine Network Profile in Th1/Type 1 Effector B Cells Delineates a Common Group of Patients in Four Systemic Autoimmune Diseases. Arthritis and Rheumatology, 2021, 73, 1550-1561.	2.9	24
23	Downregulation of exhausted cytotoxic T cells in gene expression networks of multisystem inflammatory syndrome in children. Nature Communications, 2021, 12, 4854.	5.8	42
24	Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nature Genetics, 2021, 53, 1311-1321.	9.4	218
25	Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality. Journal of Clinical Investigation, 2021, 131, .	3.9	72
26	Epigenetics in systemic lupus erythematosus and the integration of molecular pathways. , 2021, , 35-61.		0
27	Evaluating the Impact of Sex-Biased Genetic Admixture in the Americas through the Analysis of Haplotype Data. Genes, 2021, 12, 1580.	1.0	6
28	Geographic Location Determines Differentially Methylated Gene Expressions in Autoimmune Diseases. Immuno, 2021, 1, 529-544.	0.6	0
29	Integrative epigenomics in Sj¶gren´s syndrome reveals novel pathways and a strong interaction between the HLA, autoantibodies and the interferon signature. Scientific Reports, 2021, 11, 23292.	1.6	16
30	BANK1 interacts with TRAF6 and MyD88 in innate immune signaling in B cells. Cellular and Molecular Immunology, 2020, 17, 954-965.	4.8	28
31	Discovering new metabolite alterations in primary sjŶgren's syndrome in urinary and plasma samples using an HPLC-ESI-QTOF-MS methodology. Journal of Pharmaceutical and Biomedical Analysis, 2020, 179, 112999.	1.4	14
32	Antiphospholipid autoantibody detection is important in all patients with systemic autoimmune diseases. Journal of Autoimmunity, 2020, 115, 102524.	3.0	15
33	Standardization procedure for flow cytometry data harmonization in prospective multicenter studies. Scientific Reports, 2020, 10, 11567.	1.6	20
34	Tracking Potential COVID-19 Outbreaks With Influenzalike Symptoms Urgent Care Visits. Pediatrics, 2020, 146, .	1.0	0
35	Comparative analysis of affected and unaffected areas of systemic sclerosis skin biopsies by high-throughput proteomic approaches. Arthritis Research and Therapy, 2020, 22, 107.	1.6	5
36	Metabolic Disturbances in Urinary and Plasma Samples from Seven Different Systemic Autoimmune Diseases Detected by HPLC-ESI-QTOF-MS. Journal of Proteome Research, 2020, 19, 3220-3229.	1.8	12

#	Article	IF	CITATIONS
37	Proteomic analysis in lupus mice identifies Coronin-1A as a potential biomarker for lupus nephritis. Arthritis Research and Therapy, 2020, 22, 147.	1.6	5
38	lgM antibodies against malondialdehyde and phosphorylcholine in different systemic rheumatic diseases. Scientific Reports, 2020, 10, 11010.	1.6	11
39	Expanding the inventory of rare variants in SLE. Lancet Rheumatology, The, 2020, 2, e67-e69.	2.2	0
40	A Case Report of Switching from Specific Vendor-Based to R-Based Pipelines for Untargeted LC-MS Metabolomics. Metabolites, 2020, 10, 28.	1.3	13
41	Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry. Computational and Structural Biotechnology Journal, 2020, 18, 874-886.	1.9	24
42	ImaGEO: integrative gene expression meta-analysis from GEO database. Bioinformatics, 2019, 35, 880-882.	1.8	102
43	Big data: the opportunity to think outside the discipline. Nature Reviews Rheumatology, 2019, 15, 639-640.	3.5	Ο
44	Differential Treatments Based on Drug-induced Gene Expression Signatures and Longitudinal Systemic Lupus Erythematosus Stratification. Scientific Reports, 2019, 9, 15502.	1.6	24
45	Epigenome-Wide Comparative Study Reveals Key Differences Between Mixed Connective Tissue Disease and Related Systemic Autoimmune Diseases. Frontiers in Immunology, 2019, 10, 1880.	2.2	26
46	Identification of a Shared Microbiomic and Metabolomic Profile in Systemic Autoimmune Diseases. Journal of Clinical Medicine, 2019, 8, 1291.	1.0	37
47	Molecular Characterization of Monocyte Subsets Reveals Specific and Distinctive Molecular Signatures Associated With Cardiovascular Disease in Rheumatoid Arthritis. Frontiers in Immunology, 2019, 10, 1111.	2.2	20
48	Drug Repurposing From Transcriptome Data: Methods and Applications. , 2019, , 303-327.		2
49	Exploring Impact of Rare Variation in Systemic Lupus Erythematosus by a Genome Wide Imputation Approach. Frontiers in Immunology, 2019, 10, 258.	2.2	16
50	New Attempts to Define and Clarify Lupus. Current Rheumatology Reports, 2019, 21, 11.	2.1	20
51	THU0215â€IGM ANTIBODIES AGAINST MALONDIALDEHYDE AND PHOSPHORYLCHOLINE IN DIFFERENT SYSTEI RHEUMATIC DISEASES. , 2019, , .	MIC	Ο
52	An update on the genetics of systemic lupus erythematosus. Current Opinion in Rheumatology, 2019, 31, 659-668.	2.0	20
53	Urinary and plasma metabolite differences detected by HPLC-ESI-QTOF-MS in systemic sclerosis patients. Journal of Pharmaceutical and Biomedical Analysis, 2019, 162, 82-90.	1.4	29
54	Genome-wide meta-analysis reveals shared new <i>loci</i> in systemic seropositive rheumatic diseases. Annals of the Rheumatic Diseases, 2019, 78, 311-319.	0.5	81

#	Article	IF	CITATIONS
55	The Genomic Impact of European Colonization of the Americas. Current Biology, 2019, 29, 3974-3986.e4.	1.8	89
56	A plausibly causal functional lupus-associated risk variant in the STAT1–STAT4 locus. Human Molecular Genetics, 2018, 27, 2392-2404.	1.4	34
57	Moving towards a molecular taxonomy of autoimmune rheumatic diseases. Nature Reviews Rheumatology, 2018, 14, 75-93.	3.5	80
58	Epigenome-wide association studies for systemic autoimmune diseases: The road behind and the road ahead. Clinical Immunology, 2018, 196, 21-33.	1.4	37
59	Stratification of Systemic Lupus Erythematosus Patients Into Three Groups of Disease Activity Progression According to Longitudinal Gene Expression. Arthritis and Rheumatology, 2018, 70, 2025-2035.	2.9	87
60	Genetic contributions to lupus nephritis in a multi-ethnic cohort of systemic lupus erythematous patients. PLoS ONE, 2018, 13, e0199003.	1.1	46
61	Microbial and metabolic multiâ€omic correlations in systemic sclerosis patients. Annals of the New York Academy of Sciences, 2018, 1421, 97-109.	1.8	50
62	Genetic fine mapping of systemic lupus erythematosus MHC associations in Europeans and African Americans. Human Molecular Genetics, 2018, 27, 3813-3824.	1.4	43
63	Trans-Ethnic Mapping of BANK1 Identifies Two Independent SLE-Risk Linkage Groups Enriched for Co-Transcriptional Splicing Marks. International Journal of Molecular Sciences, 2018, 19, 2331.	1.8	12
64	Whole Exome Sequencing of Patients from Multicase Families with Systemic Lupus Erythematosus Identifies Multiple Rare Variants. Scientific Reports, 2018, 8, 8775.	1.6	32
65	CymeR: cytometry analysis using KNIME, docker and R. Bioinformatics, 2017, 33, 776-778.	1.8	2
66	Omics studies: their use in diagnosis and reclassification of SLE and other systemic autoimmune diseases. Rheumatology, 2017, 56, kew339.	0.9	19
67	A combined large-scale meta-analysis identifies <i>COG6</i> as a novel shared risk <i>locus</i> for rheumatoid arthritis and systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2017, 76, 286-294.	0.5	58
68	Overexpression of the Cytokine BAFF and Autoimmunity Risk. New England Journal of Medicine, 2017, 376, 1615-1626.	13.9	301
69	Support for phosphoinositol 3 kinase and mTOR inhibitors as treatment for lupus using in-silico drug-repurposing analysis. Arthritis Research and Therapy, 2017, 19, 54.	1.6	13
70	Gene expression profiling comes closer to the clinic. Nature Reviews Rheumatology, 2017, 13, 69-70.	3.5	2
71	Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications. Annals of the Rheumatic Diseases, 2017, 76, 906-913.	0.5	123
72	SLE redefined on the basis of molecular pathways. Best Practice and Research in Clinical Rheumatology, 2017, 31, 291-305.	1.4	10

#	Article	IF	CITATIONS
73	The TREX1 Dinosaur Bites the Brain through the LINE. Cell Stem Cell, 2017, 21, 287-288.	5.2	6
74	Transancestral mapping and genetic load in systemic lupus erythematosus. Nature Communications, 2017, 8, 16021.	5.8	314
75	Brief Report: Rare X Chromosome Abnormalities in Systemic Lupus Erythematosus and Sjögren's Syndrome. Arthritis and Rheumatology, 2017, 69, 2187-2192.	2.9	35
76	Metagene projection characterizes GEN2.2 and CAL-1 as relevant human plasmacytoid dendritic cell models. Bioinformatics, 2017, 33, 3691-3695.	1.8	16
77	FRI0035â€Specific monocyte subsets in patients with rheumatoid arthritis are associated with the progression of the disease along with their autoimmune and pro-atherothrombotic profile. , 2017, , .		Ο
78	Effects of Amerindian Genetic Ancestry on Clinical Variables and Therapy in Patients with Rheumatoid Arthritis. Journal of Rheumatology, 2017, 44, 1804-1812.	1.0	1
79	Tartrateâ€Resistant Acid Phosphatase Deficiency in the Predisposition to Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2017, 69, 131-142.	2.9	47
80	05.06â€Specific t cell and b cell distributions characterise subgroups of patients with primary sjögren's syndrome and are associated with disease activity and pro-inflammatory cytokine expression. , 2017, , .		0
81	Regulation of Fn14 Receptor and NF-κB Underlies Inflammation in Meniere's Disease. Frontiers in Immunology, 2017, 8, 1739.	2.2	48
82	MetaGenyo: a web tool for meta-analysis of genetic association studies. BMC Bioinformatics, 2017, 18, 563.	1.2	88
83	X Chromosome Dose and Sex Bias in Autoimmune Diseases: Increased Prevalence of 47,XXX in Systemic Lupus Erythematosus and SjĶgren's Syndrome. Arthritis and Rheumatology, 2016, 68, 1290-1300.	2.9	114
84	Identification of a Systemic Lupus Erythematosus Risk Locus Spanning <i>ATG16L2, FCHSD2</i> , and <i>P2RY2</i> in Koreans. Arthritis and Rheumatology, 2016, 68, 1197-1209.	2.9	89
85	Disease features and outcomes in United States lupus patients of Hispanic origin and their Mestizo counterparts in Latin America: a commentary. Rheumatology, 2016, 55, kev280.	0.9	17
86	Genetics of systemic lupus erythematosus and Sjögren's syndrome: an update. Current Opinion in Rheumatology, 2016, 28, 506-514.	2.0	53
87	Genomeâ€Wide Association Study in an Amerindian Ancestry Population Reveals Novel Systemic Lupus Erythematosus Risk Loci and the Role of European Admixture. Arthritis and Rheumatology, 2016, 68, 932-943.	2.9	138
88	Klinefelter's syndrome (47,XXY) is in excess among men with Sjögren's syndrome. Clinical Immunology, 2016, 168, 25-29.	1.4	68
89	Multi-center harmonization of flow cytometers in the context of the European "PRECISESADS― project. Autoimmunity Reviews, 2016, 15, 1038-1045.	2.5	36
90	The genetic basis of systemic lupus erythematosus: What are the risk factors and what have we learned. Journal of Autoimmunity, 2016, 74, 161-175.	3.0	133

#	Article	IF	CITATIONS
91	The SLE variant Ala71Thr of BLK severely decreases protein abundance and binding to BANK1 through impairment of the SH3 domain function. Genes and Immunity, 2016, 17, 128-138.	2.2	7
92	<i>IFI44L</i> promoter methylation as a blood biomarker for systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2016, 75, 1998-2006.	0.5	167
93	Decreased <i>SMG7</i> expression associates with lupus-risk variants and elevated antinuclear antibody production. Annals of the Rheumatic Diseases, 2016, 75, 2007-2013.	0.5	16
94	Preferential association of a functional variant in complement receptor 2 with antibodies to double-stranded DNA. Annals of the Rheumatic Diseases, 2016, 75, 242-252.	0.5	10
95	BANK1 Regulates IgG Production in a Lupus Model by Controlling TLR7-Dependent STAT1 Activation. PLoS ONE, 2016, 11, e0156302.	1.1	29
96	Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases. PLoS ONE, 2016, 11, e0160270.	1.1	4
97	Association of Systemic Lupus Erythematosus With Decreased Immunosuppressive Potential of the IgG Glycome. Arthritis and Rheumatology, 2015, 67, 2978-2989.	2.9	211
98	Genomic Insights into the Ancestry and Demographic History of South America. PLoS Genetics, 2015, 11, e1005602.	1.5	198
99	Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. Journal of Clinical Investigation, 2015, 125, 413-424.	3.9	190
100	Concordance of Increased B1 Cell Subset and Lupus Phenotypes in Mice and Humans Is Dependent on BLK Expression Levels. Journal of Immunology, 2015, 194, 5692-5702.	0.4	41
101	<i>HLA-DRB1*11</i> and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15970-15975.	3.3	139
102	Towards the taxonomy of human disease. Nature Reviews Drug Discovery, 2015, 14, 75-76.	21.5	46
103	PXKlocus in systemic lupus erythematosus: fine mapping and functional analysis reveals novel susceptibility geneABHD6. Annals of the Rheumatic Diseases, 2015, 74, e14-e14.	0.5	24
104	Lupus in Latin-American patients: lessons from the GLADEL cohort. Lupus, 2015, 24, 536-545.	0.8	54
105	Genetic association of CD247 (CD3ζ) with SLE in a large-scale multiethnic study. Genes and Immunity, 2015, 16, 142-150.	2.2	24
106	Lupus risk variants in the PXK locus alter B-cell receptor internalization. Frontiers in Genetics, 2015, 5, 450.	1.1	25
107	Lupus Risk Variant Increases pSTAT1 Binding and Decreases ETS1 Expression. American Journal of Human Genetics, 2015, 96, 731-739.	2.6	36
108	Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nature Genetics, 2015, 47, 1457-1464.	9.4	730

#	Article	IF	CITATIONS
109	The IRF5–TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Human Molecular Genetics, 2015, 24, 582-596.	1.4	74
110	Genetic analysis of the pathogenic molecular sub-phenotype interferon-alpha identifies multiple novel loci involved in systemic lupus erythematosus. Genes and Immunity, 2015, 16, 15-23.	2.2	81
111	Intronic Variants in the NFKB1 Gene May Influence Hearing Forecast in Patients with Unilateral Sensorineural Hearing Loss in Meniere's Disease. PLoS ONE, 2014, 9, e112171.	1.1	37
112	Shared signatures between rheumatoid arthritis, systemic lupus erythematosus and Sjögren's syndrome uncovered through gene expression meta-analysis. Arthritis Research and Therapy, 2014, 16, 489.	1.6	65
113	A Coding IRAK2 Protein Variant Compromises Toll-like receptor (TLR) Signaling and Is Associated with Colorectal Cancer Survival. Journal of Biological Chemistry, 2014, 289, 23123-23131.	1.6	18
114	Allelic heterogeneity in NCF2 associated with systemic lupus erythematosus (SLE) susceptibility across four ethnic populations. Human Molecular Genetics, 2014, 23, 1656-1668.	1.4	67
115	Two Functional Lupus-Associated BLK Promoter Variants Control Cell-Type- and Developmental-Stage-Specific Transcription. American Journal of Human Genetics, 2014, 94, 586-598.	2.6	59
116	Epigenomic elements enriched in the promoters of autoimmunity susceptibility genes. Epigenetics, 2014, 9, 276-285.	1.3	42
117	Immunochip Analysis Identifies Multiple Susceptibility Loci for Systemic Sclerosis. American Journal of Human Genetics, 2014, 94, 47-61.	2.6	182
118	Lupus Nephritis Susceptibility Loci in Women with Systemic Lupus Erythematosus. Journal of the American Society of Nephrology: JASN, 2014, 25, 2859-2870.	3.0	117
119	GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region. Genes and Immunity, 2014, 15, 347-354.	2.2	109
120	Subphenotype mapping in systemic lupus erythematosus identifies multiple novel loci associated with circulating interferon alpha. Arthritis Research and Therapy, 2014, 16, A10.	1.6	0
121	Allelic variants in TLR10 gene may influence bilateral affectation and clinical course of Meniere's disease. Immunogenetics, 2013, 65, 345-355.	1.2	59
122	Variable Association of Reactive Intermediate Genes with Systemic Lupus Erythematosus in Populations with Different African Ancestry. Journal of Rheumatology, 2013, 40, 842-849.	1.0	15
123	Rheumatoid Arthritis in Latin Americans Enriched for Amerindian Ancestry Is Associated With Loci in Chromosomes 1, 12, and 13, and the HLA Class II Region. Arthritis and Rheumatism, 2013, 65, 1457-1467.	6.7	37
124	Admixture Mapping in Lupus Identifies Multiple Functional Variants within IFIH1 Associated with Apoptosis, Inflammation, and Autoantibody Production. PLoS Genetics, 2013, 9, e1003222.	1.5	107
125	Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4. PLoS Genetics, 2013, 9, e1003554.	1.5	50
126	Fine mapping of Xq28: both <i>MECP2 and IRAK1</i> contribute to risk for systemic lupus erythematosus in multiple ancestral groups. Annals of the Rheumatic Diseases, 2013, 72, 437-444.	0.5	97

#	Article	IF	CITATIONS
127	ABIN1 Dysfunction as a Genetic Basis for Lupus Nephritis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1743-1754.	3.0	70
128	A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. Human Molecular Genetics, 2013, 22, 4021-4029.	1.4	104
129	BANK1 Controls CpC-Induced IL-6 Secretion via a p38 and MNK1/2/eIF4E Translation Initiation Pathway. Journal of Immunology, 2013, 191, 6110-6116.	0.4	27
130	BANK1 and BLK Act through Phospholipase C Gamma 2 in B-Cell Signaling. PLoS ONE, 2013, 8, e59842.	1.1	43
131	PTPN22 Association in Systemic Lupus Erythematosus (SLE) with Respect to Individual Ancestry and Clinical Sub-Phenotypes. PLoS ONE, 2013, 8, e69404.	1.1	57
132	Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes <i>BANK1</i> and <i>BLK</i> . Annals of the Rheumatic Diseases, 2012, 71, 136-142.	0.5	67
133	Analysis of autosomal genes reveals gene–sex interactions and higher total genetic risk in men with systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2012, 71, 694-699.	0.5	87
134	Fine mapping and conditional analysis identify a new mutation in the autoimmunity susceptibility gene BLK that leads to reduced half-life of the BLK protein. Annals of the Rheumatic Diseases, 2012, 71, 1219-1226.	0.5	33
135	Role of MYH9 and APOL1 in African and non-African populations with lupus nephritis. Genes and Immunity, 2012, 13, 232-238.	2.2	58
136	The dual effect of the lupus-associated polymorphism rs10516487 on BANK1 gene expression and protein localization. Genes and Immunity, 2012, 13, 129-138.	2.2	32
137	A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus. Genes and Immunity, 2012, 13, 380-387.	2.2	50
138	IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2012, 71, 463-469.	0.5	127
139	Impact of genetic ancestry and sociodemographic status on the clinical expression of systemic lupus erythematosus in American Indian–European populations. Arthritis and Rheumatism, 2012, 64, 3687-3694.	6.7	70
140	Association of two independent functional risk haplotypes in <i>TNIP1</i> with systemic lupus erythematosus. Arthritis and Rheumatism, 2012, 64, 3695-3705.	6.7	69
141	Association study of <i>IRAK-M</i> and <i>SIGIRR</i> genes with SLE in a large European-descent population. Lupus, 2012, 21, 1166-1171.	0.8	11
142	Variation in the <i>ICAM1–ICAM4–ICAM5</i> locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries. Annals of the Rheumatic Diseases, 2012, 71, 1809-1814.	0.5	60
143	Novel association of acid phosphatase locus 1*C allele with systemic lupus erythematosus. Human Immunology, 2012, 73, 107-110.	1.2	9
144	Unraveling Multiple MHC Gene Associations with Systemic Lupus Erythematosus: Model Choice Indicates a Role for HLA Alleles and Non-HLA Genes in Europeans. American Journal of Human Genetics, 2012, 91, 778-793.	2.6	140

#	Article	IF	CITATIONS
145	Genetic association of miRNA-146a with systemic lupus erythematosus in Europeans through decreased expression of the gene. Genes and Immunity, 2012, 13, 268-274.	2.2	132
146	Evaluation of <i>TRAF6</i> in a large multiancestral lupus cohort. Arthritis and Rheumatism, 2012, 64, 1960-1969.	6.7	51
147	Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as Susceptibility Loci for Systemic Lupus Erythematosus in a Large-Scale Multiracial Replication Study. American Journal of Human Genetics, 2012, 90, 648-660.	2.6	161
148	Genes, epigenetic regulation and environmental factors: Which is the most relevant in developing autoimmune diseases?. Autoimmunity Reviews, 2012, 11, 604-609.	2.5	188
149	Evidence for gene–gene epistatic interactions among susceptibility loci for systemic lupus erythematosus. Arthritis and Rheumatism, 2012, 64, 485-492.	6.7	53
150	Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production. PLoS Genetics, 2011, 7, e1001323.	1.5	206
151	Detecting Epistasis with Restricted Response Patterns in Pairs of Biallelic Loci. Annals of Human Genetics, 2011, 75, 133-145.	0.3	2
152	Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nature Genetics, 2011, 43, 253-258.	9.4	242
153	Fine-mapping and transethnic genotyping establish IL2/IL21 genetic association with lupus and localize this genetic effect to IL21. Arthritis and Rheumatism, 2011, 63, 1689-1697.	6.7	49
154	Genetic analyses of interferon pathway-related genes reveal multiple new loci associated with systemic lupus erythematosus. Arthritis and Rheumatism, 2011, 63, 2049-2057.	6.7	45
155	Association of <i>PPP2CA</i> polymorphisms with systemic lupus erythematosus susceptibility in multiple ethnic groups. Arthritis and Rheumatism, 2011, 63, 2755-2763.	6.7	36
156	Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study. Arthritis and Rheumatism, 2011, 63, 3493-3501.	6.7	109
157	A putative functional variant within the <i>UBAC2</i> gene is associated with increased risk of Behçet's disease. Arthritis and Rheumatism, 2011, 63, 3607-3612.	6.7	39
158	Dual effect of the macrophage migration inhibitory factor gene on the development and severity of human systemic lupus erythematosus. Arthritis and Rheumatism, 2011, 63, 3942-3951.	6.7	106
159	Early disease onset is predicted by a higher genetic risk for lupus and is associated with a more severe phenotype in lupus patients. Annals of the Rheumatic Diseases, 2011, 70, 151-156.	0.5	155
160	Risk Alleles for Systemic Lupus Erythematosus in a Large Case-Control Collection and Associations with Clinical Subphenotypes. PLoS Genetics, 2011, 7, e1001311.	1.5	154
161	A Comprehensive Analysis of Shared Loci between Systemic Lupus Erythematosus (SLE) and Sixteen Autoimmune Diseases Reveals Limited Genetic Overlap. PLoS Genetics, 2011, 7, e1002406.	1.5	148
162	Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2011, 70, 1752-1757.	0.5	110

#	Article	IF	CITATIONS
163	Association of Genetic Variants in Complement Factor H and Factor H-Related Genes with Systemic Lupus Erythematosus Susceptibility. PLoS Genetics, 2011, 7, e1002079.	1.5	181
164	IRF5 is associated with primary antiphospholipid syndrome, but is not a major risk factor. Arthritis and Rheumatism, 2010, 62, 1201-1202.	6.7	17
165	Lower expression levels of the programmed death 1 receptor on CD4+CD25+ T cells and correlation with the PDâ€1.3A genotype in patients with systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 1702-1711.	6.7	55
166	A 3′â€untranslated region variant is associated with impaired expression of <i>CD226</i> in T and natural killer T cells and is associated with susceptibility to systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 3404-3414.	6.7	48
167	Genetically determined Amerindian ancestry correlates with increased frequency of risk alleles for systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 3722-3729.	6.7	70
168	Recent findings on genetics of systemic autoimmune diseases. Current Opinion in Immunology, 2010, 22, 698-705.	2.4	78
169	Promoter Insertion/Deletion in the <i>IRF5</i> Gene Is Highly Associated with Susceptibility to Systemic Lupus Erythematosus in Distinct Populations, But Exerts a Modest Effect on Gene Expression in Peripheral Blood Mononuclear Cells. Journal of Rheumatology, 2010, 37, 574-578.	1.0	32
170	The Role of Genetic Variation Near Interferon-Kappa in Systemic Lupus Erythematosus. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-11.	3.0	44
171	Genetic associations in type I interferon related pathways with autoimmunity. Arthritis Research and Therapy, 2010, 12, S2.	1.6	32
172	Identification of a new putative functional IL18 gene variant through an association study in systemic lupus erythematosus. Human Molecular Genetics, 2009, 18, 3739-3748.	1.4	54
173	Evaluation of imputation-based association in and around the integrin-Â-M (ITGAM) gene and replication of robust association between a non-synonymous functional variant within ITGAM and systemic lupus erythematosus (SLE). Human Molecular Genetics, 2009, 18, 1171-1180.	1.4	100
174	F.20. Delineating SLE Susceptibility Polymorphisms at the OX40L Locus. Clinical Immunology, 2009, 131, S99.	1.4	0
175	Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Human Mutation, 2009, 30, 69-78.	1.1	466
176	Study of functional variants of the <i>BANK1</i> gene in rheumatoid arthritis. Arthritis and Rheumatism, 2009, 60, 372-379.	6.7	50
177	Variants within <i>MECP2</i> , a key transcription regulator, are associated with increased susceptibility to lupus and differential gene expression in patients with systemic lupus erythematosus. Arthritis and Rheumatism, 2009, 60, 1076-1084.	6.7	80
178	Highâ€density genotyping of STAT4 reveals multiple haplotypic associations with systemic lupus erythematosus in different racial groups. Arthritis and Rheumatism, 2009, 60, 1085-1095.	6.7	82
179	A polymorphism within <i>IL21R</i> confers risk for systemic lupus erythematosus. Arthritis and Rheumatism, 2009, 60, 2402-2407.	6.7	108
180	Association of <i>STAT4</i> and <i>BLK</i> , but not <i>BANK1</i> or <i>IRF5</i> , with primary antiphospholipid syndrome. Arthritis and Rheumatism, 2009, 60, 2468-2471.	6.7	66

#	Article	IF	CITATIONS
181	European population substructure is associated with mucocutaneous manifestations and autoantibody production in systemic lupus erythematosus. Arthritis and Rheumatism, 2009, 60, 2448-2456.	6.7	27
182	An ancestry informative marker set for determining continental origin: validation and extension using human genome diversity panels. BMC Genetics, 2009, 10, 39.	2.7	149
183	Replication of the TNFSF4 (OX40L) promoter region association with systemic lupus erythematosus. Genes and Immunity, 2009, 10, 248-253.	2.2	41
184	Kallikrein genes are associated with lupus and glomerular basement membrane–specific antibody–induced nephritis in mice and humans. Journal of Clinical Investigation, 2009, 119, 911-923.	3.9	114
185	Association of <i>STAT4</i> with rheumatoid arthritis: A replication study in three European populations. Arthritis and Rheumatism, 2008, 58, 1974-1980.	6.7	93
186	Association of three systemic lupus erythematosus susceptibility factors, PDâ€1.3A, C4AQ0, and low levels of mannanâ€binding lectin, with autoimmune manifestations in icelandic multicase systemic lupus erythematosus families. Arthritis and Rheumatism, 2008, 58, 3865-3872.	6.7	9
187	A nonsynonymous functional variant in integrin-αM (encoded by ITGAM) is associated with systemic lupus erythematosus. Nature Genetics, 2008, 40, 152-154.	9.4	277
188	Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nature Genetics, 2008, 40, 211-216.	9.4	436
189	Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genetics, 2008, 40, 204-210.	9.4	1,192
190	IFN-Regulatory Factor 5 Gene Variants Interact with the Class I MHC Locus in the Swedish Psoriasis Population. Journal of Investigative Dermatology, 2008, 128, 1704-1709.	0.3	13
191	OR.104. Association of Sjögren's Syndrome (SS) and Systemic Lupus Erythematosus (SLE) with BLK. Clinical Immunology, 2008, 127, S41.	1.4	0
192	Sa.9. Common Variants within MECP2 Confer Risk of Systemic Lupus Erythematosus. Clinical Immunology, 2008, 127, S83.	1.4	0
193	A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Human Molecular Genetics, 2008, 18, 569-579.	1.4	106
194	Common Variants within MECP2 Confer Risk of Systemic Lupus Erythematosus. PLoS ONE, 2008, 3, e1727.	1.1	125
195	Association of a haplotype of IRF5 gene with systemic lupus erythematosus in Chinese. Journal of Rheumatology, 2008, 35, 360-2.	1.0	38
196	The genetics and biology of Irf5-mediated signaling in lupus. Autoimmunity, 2007, 40, 591-601.	1.2	59
197	The genetics of systemic lúpus erythematosus: The path ahead. Autoimmunity, 2007, 40, 549-549.	1.2	0
198	Structural insertion/deletion variation in IRF5 is associated with a risk haplotype and defines the precise IRF5 isoforms expressed in systemic lupus erythematosus. Arthritis and Rheumatism, 2007, 56, 1234-1241.	6.7	105

#	Article	IF	CITATIONS
199	Association of a <i>CD24</i> gene polymorphism with susceptibility to systemic lupus erythematosus. Arthritis and Rheumatism, 2007, 56, 3080-3086.	6.7	47
200	Argentine population genetic structure: Large variance in Amerindian contribution. American Journal of Physical Anthropology, 2007, 132, 455-462.	2.1	73
201	Recent Advances in the Genetics of Autoimmune Diseases. Annals of the New York Academy of Sciences, 2007, 1110, 1-9.	1.8	13
202	Genetic association of IRF5 with SLE in Mexicans: higher frequency of the risk haplotype and its homozygozity than Europeans. Human Genetics, 2007, 121, 721-727.	1.8	72
203	Decreased Risk for Myocardial Infarction and Lower Tumor Necrosis Factor–α Levels in Carriers of Variants of the PDCD1 Gene. Human Immunology, 2006, 67, 700-705.	1.2	13
204	Nucleic acid by-products and chronic inflammation. Nature Genetics, 2006, 38, 866-867.	9.4	19
205	A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nature Genetics, 2006, 38, 550-555.	9.4	593
206	The genetics of systemic lupus erythematosus: understanding how SNPs confer disease susceptibility. Seminars in Immunopathology, 2006, 28, 109-117.	4.0	12
207	Analysis ofIRF5 gene functional polymorphisms in rheumatoid arthritis. Arthritis and Rheumatism, 2006, 54, 3815-3819.	6.7	53
208	IgG Fc receptor polymorphisms and association with autoimmune disease. European Journal of Immunology, 2005, 35, 3020-3029.	1.6	9
209	Programmed death 1 gene polymorphism and systemic lupus erythematosus in different ethnic populations: Comment on the article by Lin et al. Arthritis and Rheumatism, 2005, 52, 363-363.	6.7	1
210	A new haplotype ofPDCD1is associated with rheumatoid arthritis in Hong Kong Chinese. Arthritis and Rheumatism, 2005, 52, 1058-1062.	6.7	131
211	Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis and Rheumatism, 2005, 52, 1138-1147.	6.7	347
212	Examination of ancestry and ethnic affiliation using highly informative diallelic DNA markers: application to diverse and admixed populations and implications for clinical epidemiology and forensic medicine. Human Genetics, 2005, 118, 382-392.	1.8	132
213	The genetics of shared autoimmunity. Autoimmunity, 2005, 38, 205-208.	1.2	11
214	Shared autoimmunity: The concept and introduction. Autoimmunity, 2005, 38, 199-199.	1.2	2
215	ObituaryDonato Alarcon-Segoviaâœ, M.D.Mexico City, May 6, 1935–December 21, 2004. Autoimmunity, 2005, 38, 197-198.	1.2	0
216	The genetics of systemic lupus erythematosus. Journal of Autoimmunity, 2005, 25, 46-48.	3.0	23

#	Article	IF	CITATIONS
217	ETIOPATHOGENESIS OF SYSTEMIC LUPUS ERYTHEMATOSUS. , 2004, , 93-107.		7
218	Regulatory SNPs in complex diseases: their identification and functional validation. Expert Reviews in Molecular Medicine, 2004, 6, 1-15.	1.6	79
219	The genetic basis of systemic lupus erythematosusknowledge of today and thoughts for tomorrow. Human Molecular Genetics, 2004, 13, 143R-148.	1.4	49
220	Chromosome 17p12-q11 harbors susceptibility loci for systemic lupus erythematosus. Human Genetics, 2004, 115, 230-8.	1.8	34
221	The systemic lupus erythematosus-associatedPDCD1polymorphism PD1.3A in lupus nephritis. Arthritis and Rheumatism, 2004, 50, 327-328.	6.7	75
222	Association of the PD-1.3A allele of thePDCD1gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. Arthritis and Rheumatism, 2004, 50, 1770-1773.	6.7	146
223	Role of RUNX in autoimmune diseases linking rheumatoid arthritis, psoriasis and lupus. Arthritis Research, 2004, 6, 169.	2.0	51
224	Functional genomics in the study of autoimmune diseases. Autoimmunity Reviews, 2003, 2, 177-180.	2.5	2
225	Increased salivary gland tissue expression of Fas, Fas ligand, cytotoxic T lymphocyte–associated antigen 4, and programmed cell death 1 in primary SjĶgren's syndrome. Arthritis and Rheumatism, 2003, 48, 174-185.	6.7	95
226	A RUNX trio with a taste for autoimmunity. Nature Genetics, 2003, 35, 299-300.	9.4	48
227	Finding genes for SLE: complex interactions and complex populations. Journal of Autoimmunity, 2003, 21, 117-120.	3.0	8
228	A Major Susceptibility Locus for Systemic Lupus Erythemathosus Maps to Chromosome 1q31. American Journal of Human Genetics, 2002, 71, 1060-1071.	2.6	101
229	The genetic control of sialadenitis versus arthritis in a NOD.Q×B10.Q F2 cross. European Journal of Immunology, 2002, 32, 243-250.	1.6	19
230	A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nature Genetics, 2002, 32, 666-669.	9.4	694
231	Genetic control of collagen-induced arthritis in a cross with NOD and C57BL/10 mice is dependent on gene regions encoding complement factor 5 and Fcl³Rllb and is not associated with loci controlling diabetes. European Journal of Immunology, 2001, 31, 1847-1856.	1.6	83
232	A Susceptibility Locus for Human Systemic Lupus Erythematosus (hSLE1) on Chromosome 2q. Journal of Autoimmunity, 2000, 14, 169-178.	3.0	180
233	A Comparison of Genome-scans Performed in Multicase Families with Systemic Lupus Erythematosus from Different Population Groups. Journal of Autoimmunity, 1999, 13, 137-141.	3.0	26
234	Age-dependent responsiveness to interleukin-6 in B lymphocytes from a systemic lupus erythematosus-prone (NZB × NZW)F1 hybrid. Clinical Immunology and Immunopathology, 1992, 62, 264-269.	2.1	35

#	Article	IF	CITATIONS
235	Activation markers on peripheral blood T cells from patients with active or inactive systemic lupus erythematosus. Correlation with proliferative responses and production of IL-2. Journal of Autoimmunity, 1991, 4, 935-945.	3.0	21
236	T lymphocyte subsets, suppressor and contrasuppressor cell functions, and production of interleukin-2 in the peripheral blood of rheumatic fever patients and their apparently healthy siblings. Clinical Immunology and Immunopathology, 1990, 55, 120-128.	2.1	12