
Yun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6047625/publications.pdf Version: 2024-02-01

ΥΠΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature, 2005, 438, 179-184.	27.8	679
2	Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2295-2300.	7.1	320
3	Functional Organization of a Neural Network for Aversive Olfactory Learning in Caenorhabditis elegans. Neuron, 2010, 68, 1173-1186.	8.1	152
4	Compartmentalized calcium dynamics in a C. elegans interneuron encode head movement. Nature, 2012, 487, 99-103.	27.8	147
5	Specific insulin-like peptides encode sensory information to regulate distinct developmental processes. Development (Cambridge), 2011, 138, 1183-1193.	2.5	124
6	Two Insulin-like Peptides Antagonistically Regulate Aversive Olfactory Learning in C.Âelegans. Neuron, 2013, 77, 572-585.	8.1	121
7	Dynamic Encoding of Perception, Memory, and Movement in a C. elegans Chemotaxis Circuit. Neuron, 2014, 82, 1115-1128.	8.1	121
8	An Insulin-to-Insulin Regulatory Network Orchestrates Phenotypic Specificity in Development and Physiology. PLoS Genetics, 2014, 10, e1004225.	3.5	90
9	Olfactory Behavior of Swimming <i>C. elegans</i> Analyzed by Measuring Motile Responses to Temporal Variations of Odorants. Journal of Neurophysiology, 2008, 99, 2617-2625.	1.8	57
10	DBL-1, a TGF-β, is essential for <i>Caenorhabditis elegans</i> aversive olfactory learning. Proceedings of the United States of America, 2012, 109, 17081-17086.	7.1	53
11	Cholinergic Sensorimotor Integration Regulates Olfactory Steering. Neuron, 2018, 97, 390-405.e3.	8.1	46
12	An extrasynaptic GABAergic signal modulates a pattern of forward movement in Caenorhabditis elegans. ELife, 2016, 5, .	6.0	44
13	Dissecting the Signaling Mechanisms Underlying Recognition and Preference of Food Odors. Journal of Neuroscience, 2014, 34, 9389-9403.	3.6	42
14	Thioredoxin shapes the C. elegans sensory response to Pseudomonas produced nitric oxide. ELife, 2018, 7, .	6.0	41
15	Multisensory integration in C. elegans. Current Opinion in Neurobiology, 2017, 43, 110-118.	4.2	39
16	Neuronal mechanisms of Caenorhabditis elegans and pathogenic bacteria interactions. Current Opinion in Microbiology, 2008, 11, 257-261.	5.1	29
17	Pheromones Modulate Learning by Regulating the Balanced Signals of Two Insulin-like Peptides. Neuron, 2019, 104, 1095-1109.e5.	8.1	29
18	Neuronal subâ€compartmentalization: a strategy to optimize neuronal function. Biological Reviews, 2019, 94, 1023-1037.	10.4	27

Yun Zhang

#	Article	IF	CITATIONS
19	A Neuronal Signaling Pathway of CaMKII and Gqα Regulates Experience-Dependent Transcription of <i>tph-1</i> . Journal of Neuroscience, 2013, 33, 925-935.	3.6	25
20	Molecular and cellular modulators for multisensory integration in C. elegans. PLoS Genetics, 2019, 15, e1007706.	3.5	22
21	<i>C. elegans</i> aversive olfactory learning generates diverse intergenerational effects. Journal of Neurogenetics, 2020, 34, 378-388.	1.4	22
22	Sensory systems: their impact on C. elegans survival. Neuroscience, 2015, 296, 15-25.	2.3	19
23	NMDAR-mediated modulation of gap junction circuit regulates olfactory learning in C. elegans. Nature Communications, 2020, 11, 3467.	12.8	19
24	Complex RIA calcium dynamics and its function in navigational behavior. Worm, 2013, 2, e25546.	1.0	16
25	An Aversive Response to Osmotic Upshift in <i>Caenorhabditis elegans</i> . ENeuro, 2017, 4, ENEURO.0282-16.2017.	1.9	14
26	Deorphanization of novel biogenic amine-gated ion channels identifies a new serotonin receptor for learning. Current Biology, 2021, 31, 4282-4292.e6.	3.9	13
27	An Elongin-Cullin-SOCS Box Complex Regulates Stress-Induced Serotonergic Neuromodulation. Cell Reports, 2017, 21, 3089-3101.	6.4	12
28	Forgetting generates a novel state that is reactivatable. Science Advances, 2022, 8, eabi9071.	10.3	9
29	Global regulatory features of alternative splicing across tissues and within the nervous system of <i>C. elegans</i> . Genome Research, 2020, 30, 1766-1780.	5.5	8
30	What can a worm learn in a bacteria-rich habitat?. Journal of Neurogenetics, 2020, 34, 369-377.	1.4	8
31	Redundant neural circuits regulate olfactory integration. PLoS Genetics, 2022, 18, e1010029.	3.5	7
32	Neuronal control of maternal provisioning in response to social cues. Science Advances, 2021, 7, .	10.3	2
33	Nature's gift to neuroscience. Journal of Neurogenetics, 2020, 34, 223-224.	1.4	1