Maria Chiara Carrozza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6046769/publications.pdf

Version: 2024-02-01

137 papers 8,832 citations

44069 48 h-index 89 g-index

145 all docs 145
docs citations

145 times ranked 6932 citing authors

#	Article	IF	CITATIONS
1	Predicting SARS-CoV-2 infection duration at hospital admission:a deep learning solution. Medical and Biological Engineering and Computing, 2022, 60, 459-470.	2.8	2
2	A meta-learning algorithm for respiratory flow prediction from FBG-based wearables in unrestrained conditions. Artificial Intelligence in Medicine, 2022, 130, 102328.	6.5	7
3	Poststroke shoulder pain in subacute patients and its correlation with upper limb recovery after robotic or conventional treatment: A secondary analysis of a multicenter randomized controlled trial. International Journal of Stroke, 2021, 16, 396-405.	5.9	7
4	Age is negatively associated with upper limb recovery after conventional but not robotic rehabilitation in patients with stroke: a secondary analysis of a randomized-controlled trial. Journal of Neurology, 2021, 268, 474-483.	3.6	4
5	Endoscopic Tactile Capsule for Non-Polypoid Colorectal Tumour Detection. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 64-73.	3.2	5
6	Influence of Cognitive Impairment on the Recovery of Subjects with Subacute Stroke Undergoing Upper Limb Robotic Rehabilitation. Brain Sciences, $2021, 11, 587$.	2.3	12
7	Predictors of Function, Activity, and Participation of Stroke Patients Undergoing Intensive Rehabilitation: A Multicenter Prospective Observational Study Protocol. Frontiers in Neurology, 2021, 12, 632672.	2.4	15
8	Respiratory rate monitoring of video terminal operators based on fiber optic technology., 2021,,.		1
9	A Wearable System Based on Flexible Sensors for Unobtrusive Respiratory Monitoring in Occupational Settings. IEEE Sensors Journal, 2021, 21, 14369-14378.	4.7	32
10	Data-driven prediction of decannulation probability and timing in patients with severe acquired brain injury. Computer Methods and Programs in Biomedicine, 2021, 209, 106345.	4.7	12
11	Feasibility of subacute rehabilitation for mechanically ventilated patients with COVID-19 disease: a retrospective case series. International Journal of Rehabilitation Research, 2021, 44, 77-81.	1.3	16
12	Cognitive reserve as a useful variable to address robotic or conventional upper limb rehabilitation treatment after stroke: a multicentre study of the Fondazione Don Carlo Gnocchi. European Journal of Neurology, 2020, 27, 392-398.	3.3	18
13	Upper Limb Robotic Rehabilitation After Stroke: A Multicenter, Randomized Clinical Trial. Journal of Neurologic Physical Therapy, 2020, 44, 3-14.	1.4	73
14	Tactile sensing with gesture-controlled collaborative robot. , 2020, , .		3
15	Feasibility and Efficacy of the Pulmonary Rehabilitation Program in a Rehabilitation Center. Journal of Cardiopulmonary Rehabilitation and Prevention, 2020, 40, 205-208.	2.1	27
16	Design and Experimental Characterization of a Shoulder-Elbow Exoskeleton With Compliant Joints for Post-Stroke Rehabilitation. IEEE/ASME Transactions on Mechatronics, 2019, 24, 1485-1496.	5.8	69
17	Identification of Slippage on Naturalistic Surfaces via Wavelet Transform of Tactile Signals. IEEE Sensors Journal, 2019, 19, 1260-1268.	4.7	8
18	On the Way to Robotics. Biosystems and Biorobotics, 2019, , 13-26.	0.3	0

#	Article	IF	CITATIONS
19	Our Friend the Robot. Biosystems and Biorobotics, 2019, , 41-52.	0.3	1
20	Design and validation of a miniaturized SEA transmission system. Mechatronics, 2018, 49, 149-156.	3.3	11
21	Haptic-assistive technologies for audition and vision sensory disabilities. Disability and Rehabilitation: Assistive Technology, 2018, 13, 394-421.	2.2	46
22	Neuromorphic Artificial Sense of Touch: Bridging Robotics and Neuroscience. Springer Proceedings in Advanced Robotics, 2018, , 617-630.	1.3	6
23	Neuromorphic Vibrotactile Stimulation of Fingertips for Encoding Object Stiffness in Telepresence Sensory Substitution and Augmentation Applications. Sensors, 2018, 18, 261.	3.8	18
24	Robotic endoscopic capsule for closed-loop force-based control and safety strategies. , 2017, , .		3
25	Phase-II Clinical Validation of a Powered Exoskeleton for the Treatment of Elbow Spasticity. Frontiers in Neuroscience, 2017, 11, 261.	2.8	12
26	Slippage Detection with Piezoresistive Tactile Sensors. Sensors, 2017, 17, 1844.	3.8	38
27	Encapsulation of Piezoelectric Transducers for Sensory Augmentation and Substitution with Wearable Haptic Devices. Micromachines, 2017, 8, 270.	2.9	23
28	Functional Design of a Powered Elbow Orthosis Toward its Clinical Employment. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1880-1891.	5.8	33
29	Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. ELife, 2016, 5, e09148.	6.0	286
30	Relevance of Series-Elastic actuation in rehabilitation and assistance robotic: Two cases of study., 2015,,.		3
31	Neuro-robotics Paradigm for Intelligent Assistive Technologies. Springer Tracts in Advanced Robotics, 2015, , 1-40.	0.4	4
32	A Mechatronic System for Robot-Mediated Hand Telerehabilitation. IEEE/ASME Transactions on Mechatronics, 2015, 20, 1753-1764.	5.8	56
33	Providing Time-Discrete Gait Information by Wearable Feedback Apparatus for Lower-Limb Amputees: Usability and Functional Validation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 250-257.	4.9	74
34	Bioinspired Fingertip for Anthropomorphic Robotic Hands. Applied Bionics and Biomechanics, 2014, 11, 25-38.	1.1	19
35	Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex. Journal of Neural Engineering, 2014, 11, 066011.	3.5	16
36	Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Science Translational Medicine, 2014, 6, 222ra19.	12.4	805

#	Article	IF	CITATIONS
37	Improving Domiciliary Robotic Services by Integrating the ASTRO Robot in an Aml Infrastructure. Springer Tracts in Advanced Robotics, 2014, , 267-282.	0.4	10
38	Design of Artificial Hands: A Review. Springer Tracts in Advanced Robotics, 2014, , 219-246.	0.4	86
39	Self-Alignment Mechanisms for Assistive Wearable Robots: A Kinetostatic Compatibility Method. IEEE Transactions on Robotics, 2013, 29, 236-250.	10.3	116
40	On the design, development and experimentation of the ASTRO assistive robot integrated in smart environments. , 2013 , , .		33
41	Automated detection of gait initiation and termination using wearable sensors. Medical Engineering and Physics, 2013, 35, 1713-1720.	1.7	92
42	NEUROExos: A Powered Elbow Exoskeleton for Physical Rehabilitation. IEEE Transactions on Robotics, 2013, 29, 220-235.	10.3	225
43	Preliminary evaluation of SensHand V1 in assessing motor skills performance in Parkinson disease. , 2013, 2013, 6650466.		22
44	Real-Time Estimate of Velocity and Acceleration of Quasi-Periodic Signals Using Adaptive Oscillators. IEEE Transactions on Robotics, 2013, 29, 783-791.	10.3	56
45	Powered Hip Exoskeletons Can Reduce the User's Hip and Ankle Muscle Activations During Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 938-948.	4.9	169
46	A Flexible Sensor Technology for the Distributed Measurement of Interaction Pressure. Sensors, 2013, 13, 1021-1045.	3.8	75
47	Development of an Experimental Set-Up for Providing Lower-Limb Amputees with an Augmenting Feedback. Biosystems and Biorobotics, 2013, , 321-325.	0.3	6
48	Transfer of tactile input from an artificial hand to the forearm: experiments in amputees and able-bodied volunteers. Disability and Rehabilitation: Assistive Technology, 2013, 8, 249-254.	2.2	39
49	Effects of proximal and distal robot-assisted upper limb rehabilitation on chronic stroke recovery. NeuroRehabilitation, 2013, 33, 33-39.	1.3	37
50	Upper Limb Robot-Assisted Therapy in Chronic and Subacute Stroke Patients. American Journal of Physical Medicine and Rehabilitation, 2013, 92, e26-e37.	1.4	38
51	Synthetic and Bio-Artificial Tactile Sensing: A Review. Sensors, 2013, 13, 1435-1466.	3.8	124
52	NEUROExos: A powered elbow orthosis for post-stroke early neurorehabilitation., 2013, 2013, 342-5.		21
53	Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation. , 2013, 2013, 6650414.		45
54	Effects of upper limb robot-assisted therapy on motor recovery of subacute stroke patients: A kinematic approach., 2013, 2013, 6650503.		5

#	Article	IF	Citations
55	Controlling Assistive Machines in Paralysis Using Brain Waves and Other Biosignals. Advances in Human-Computer Interaction, 2013, 2013, 1-9.	2.8	17
56	Soft-neuromorphic artificial touch for applications in neuro-robotics. , 2012, , .		24
57	Influence of the skin thickness on tactile shape discrimination. , 2012, , .		2
58	Ambient Assisted Living and ageing: Preliminary results of RITA project., 2012, 2012, 5823-6.		16
59	On the design of ergonomic wearable robotic devices for motion assistance and rehabilitation., 2012, 2012, 6124-7.		26
60	Learning tactile skills through curious exploration. Frontiers in Neurorobotics, 2012, 6, 6.	2.8	41
61	Early recognition of gait initiation and termination using wearable sensors. , 2012, , .		5
62	Real-time estimate of period derivatives using adaptive oscillators: Application to impedance-based walking assistance. , 2012 , , .		14
63	Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 40.	4.6	88
64	Mechatronic Design and Characterization of the Index Finger Module of a Hand Exoskeleton for Post-Stroke Rehabilitation. IEEE/ASME Transactions on Mechatronics, 2012, 17, 884-894.	5.8	208
65	A Miniature Vibrotactile Sensory Substitution Device for Multifingered Hand Prosthetics. IEEE Transactions on Biomedical Engineering, 2012, 59, 400-408.	4.2	127
66	Intention-Based EMG Control for Powered Exoskeletons. IEEE Transactions on Biomedical Engineering, 2012, 59, 2180-2190.	4.2	312
67	Oscillator-based walking assistance: A model-free approach. , 2011, 2011, 5975352.		34
68	NEUROExos: A variable impedance powered elbow exoskeleton. , 2011, , .		40
69	Sensing Pressure Distribution on a Lower-Limb Exoskeleton Physical Human-Machine Interface. Sensors, 2011, 11, 207-227.	3.8	96
70	Roughness Encoding for Discrimination of Surfaces in Artificial Active-Touch. IEEE Transactions on Robotics, 2011, 27, 522-533.	10.3	125
71	Measuring human–robot interaction on wearable robots: A distributed approach. Mechatronics, 2011, 21, 1123-1131.	3.3	64
72	A Novel Method for Assessing Sense of Body Ownership Using Electroencephalography. IEEE Transactions on Biomedical Engineering, 2011, 58, 12-15.	4.2	6

#	Article	IF	Citations
7 3	Human–Robot Synchrony: Flexible Assistance Using Adaptive Oscillators. IEEE Transactions on Biomedical Engineering, 2011, 58, 1001-1012.	4.2	129
74	Online Myoelectric Control of a Dexterous Hand Prosthesis by Transradial Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19, 260-270.	4.9	201
75	A robotic model to investigate human motor control. Biological Cybernetics, 2011, 105, 1-19.	1.3	12
76	A mechatronic platform for human touch studies. Mechatronics, 2011, 21, 604-613.	3.3	26
77	Oscillator-based assistance of cyclical movements: model-based and model-free approaches. Medical and Biological Engineering and Computing, 2011, 49, 1173-1185.	2.8	159
78	The SmartHand transradial prosthesis. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 29.	4.6	209
79	A capacitive tactile sensor array for surface texture discrimination. Microelectronic Engineering, 2011, 88, 1811-1813.	2.4	101
80	Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger. Sensors and Actuators A: Physical, 2011, 165, 221-229.	4.1	87
81	Decoding of individuated finger movements using surface EMG and input optimization applying a genetic algorithm., 2011, 2011, 1608-11.		14
82	Vibrotactile sensory substitution in multi-fingered hand prostheses: Evaluation studies. , 2011, 2011, 5975477.		19
83	Influence of the weight actions of the hand prosthesis on the performance of pattern recognition based myoelectric control: Preliminary study., 2011, 2011, 1620-3.		20
84	Roughness Encoding in Human and Biomimetic Artificial Touch: Spatiotemporal Frequency Modulation and Structural Anisotropy of Fingerprints. Sensors, 2011, 11, 5596-5615.	3.8	46
85	Upper limb spasticity reduction following active training: A robot-mediated study in patients with chronic hemiparesis. Journal of Rehabilitation Medicine, 2010, 42, 279-281.	1.1	33
86	Electromagnetic wobble micromotor for microrobots actuation. Sensors and Actuators A: Physical, 2010, 161, 234-244.	4.1	13
87	Miniaturized non-back-drivable mechanism for robotic applications. Mechanism and Machine Theory, 2010, 45, 1395-1406.	4.5	74
88	Modification of Pointing Performance in Altered Gravitational Environments. Microgravity Science and Technology, 2010, 22, 123-128.	1.4	1
89	A sensorless torque control for Antagonistic Driven Compliant Joints. Mechatronics, 2010, 20, 355-367.	3.3	30
90	Principal components analysis based control of a multi-dof underactuated prosthetic hand. Journal of NeuroEngineering and Rehabilitation, 2010, 7, 16.	4.6	105

#	Article	IF	Citations
91	Objectives, criteria and methods for the design of the SmartHand transradial prosthesis. Robotica, 2010, 28, 919-927.	1.9	119
92	Adaptive oscillators with human-in-the-loop: Proof of concept for assistance and rehabilitation. , 2010, , .		43
93	Bio-inspired mechanical design of a tendon-driven dexterous prosthetic hand., 2010, 2010, 499-502.		24
94	Title is missing!. Journal of Medical and Biological Engineering, 2010, 30, 399.	1.8	42
95	Artificial Roughness Encoding with a Bio-inspired MEMS-based Tactile Sensor Array. Sensors, 2009, 9, 3161-3183.	3.8	58
96	Development of a Biomimetic MEMS based Capacitive Tactile Sensor. Procedia Chemistry, 2009, 1, 124-127.	0.7	10
97	Towards Humanlike Social Touch for Sociable Robotics andÂProsthetics: Comparisons onÂtheÂCompliance, Conformance and Hysteresis of Synthetic and Human Fingertip Skins. International Journal of Social Robotics, 2009, 1, 29-40.	4.6	53
98	The neuro-robotics paradigm: NEURARM, NEUROExos, HANDEXOS., 2009, 2009, 2430-3.		23
99	A biomimetic MEMS-based tactile sensor array with fingerprints integrated in a robotic fingertip for artificial roughness encoding., 2009,,.		20
100	A first step toward a pervasive and smart ZigBee sensor system for assistance and rehabilitation. , 2009, , .		12
101	A Novel Concept for a Prosthetic Hand With a Bidirectional Interface: A Feasibility Study. IEEE Transactions on Biomedical Engineering, 2009, 56, 2739-2743.	4.2	44
102	A bio-inspired predictive sensory-motor coordination scheme forÂrobot reaching and preshaping. Autonomous Robots, 2008, 25, 85-101.	4.8	22
103	On the Use of Longitudinal Intrafascicular Peripheral Interfaces for the Control of Cybernetic Hand Prostheses in Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2008, 16, 453-472.	4.9	106
104	Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task. Brain Research Bulletin, 2008, 75, 785-795.	3.0	90
105	Development and Experimental Analysis of a Soft Compliant Tactile Microsensor for Anthropomorphic Artificial Hand. IEEE/ASME Transactions on Mechatronics, 2008, 13, 158-168.	5.8	98
106	Design and Development of a Novel Robotic Platform for Neuro-Robotics Applications: the NEURobotics ARM (NEURARM). Advanced Robotics, 2008, 22, 3-37.	1.8	11
107	Characterization of the NEURARM bio-inspired joint position and stiffness open loop controller. , 2008, , .		15
108	Development of an innovative and compliant robotic wrist. , 2008, , .		1

#	Article	IF	Citations
109	On the Shared Control of an EMG-Controlled Prosthetic Hand: Analysis of User–Prosthesis Interaction. IEEE Transactions on Robotics, 2008, 24, 170-184.	10.3	409
110	RobotCub implementation of real-time least-square fitting of ellipses. , 2008, , .		5
111	Assessing Mechanisms of Recovery During Robot-Aided Neurorehabilitation of the Upper Limb. Neurorehabilitation and Neural Repair, 2008, 22, 50-63.	2.9	136
112	The NEURARM: towards a Platform for joint Neuroscience Experiments on Human Motion Control Theories., 2007,,.		10
113	DESIGN AND DEVELOPMENT OF FIVE-FINGERED HANDS FOR A HUMANOID EMOTION EXPRESSION ROBOT. International Journal of Humanoid Robotics, 2007, 04, 181-206.	1.1	22
114	iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research. Advanced Robotics, 2007, 21, 1151-1175.	1.8	234
115	Assistive Technology: a New Approach to Evaluation. , 2007, , .		9
116	A Wearable Biomechatronic Interface for Controlling Robots with Voluntary Foot Movements. IEEE/ASME Transactions on Mechatronics, 2007, 12, 1-11.	5.8	58
117	Biomechatronic Design and Control of an Anthropomorphic Artificial Hand for Prosthetic and Robotic Applications. IEEE/ASME Transactions on Mechatronics, 2007, 12, 418-429.	5.8	287
118	Investigation on calibration methods for multi-axis, linear and redundant force sensors. Measurement Science and Technology, 2007, 18, 623-631.	2.6	45
119	Polymer sensorised microgrippers using SMA actuation. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	14
120	Guest Editorial Special Issue on Rehabilitation Robotics: From Bench to Bedside to Community Care. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15, 325-326.	4.9	3
121	The Uncanny Valley and the Search for Human Skin-Like Materials for a Prosthetic Fingertip. , 2006, , .		19
122	Design and fabrication of an electrostatically driven microgripper for blood vessel manipulation. Microelectronic Engineering, 2006, 83, 1651-1654.	2.4	50
123	Design of a cybernetic hand for perception and action. Biological Cybernetics, 2006, 95, 629-644.	1.3	287
124	Biomechanical Characterization of Needle Piercing Into Peripheral Nervous Tissue. IEEE Transactions on Biomedical Engineering, 2006, 53, 2373-2386.	4.2	21
125	Development of a Bioinstrumentation System in the Interaction between a Human and a Robot., 2006,,.		29
126	Mechanical Design of Emotion Expression Humanoid Robot WE-4RII., 2006,, 255-262.		20

#	Article	lF	CITATIONS
127	Design and fabrication of a hybrid silicon three-axial force sensor for biomechanical applications. Sensors and Actuators A: Physical, 2005, 120, 370-382.	4.1	168
128	Robotics as a future and emerging technology biomimetics, cybernetics, and neuro-robotics in european projects. IEEE Robotics and Automation Magazine, 2005, 12, 29-45.	2.0	57
129	On the Development of a Biomechatronic System to Record Tendon Sliding Movements. IEEE Transactions on Biomedical Engineering, 2005, 52, 1110-1119.	4.2	9
130	A Simple Robotic System for Neurorehabilitation. Autonomous Robots, 2005, 19, 271-284.	4.8	67
131	Guest Editorial: Special Issue on Rehabilitation Robotics. Autonomous Robots, 2003, 15, 5-6.	4.8	2
132	A SMA-actuated miniature pressure regulator for a miniature robot for colonoscopy. Sensors and Actuators A: Physical, 2003, 105, 119-131.	4.1	31
133	Micromechatronics in surgery. Transactions of the Institute of Measurement and Control, 2003, 25, 309-327.	1.7	24
134	Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Transactions on Biomedical Engineering, 2002, 49, 613-616.	4.2	186
135	Towards a force-controlled microgripper for assembling biomedical microdevices. Journal of Micromechanics and Microengineering, 2000, 10, 271-276.	2.6	124
136	Micro-systems in biomedical applications. Journal of Micromechanics and Microengineering, 2000, 10, 235-244.	2.6	176
137	Development and in Vitro Testing of a Miniature Robotic System for Computer-Assisted Colonoscopy. Computer Aided Surgery, 1999, 4, 1-14.	1.8	38