
Robertino Pilot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/604626/publications.pdf Version: 2024-02-01

POREDTINO PILOT

#	Article	IF	CITATIONS
1	Insights into the Gelation Mechanism of Metal-Coordinated Hydrogels by Paramagnetic NMR Spectroscopy and Molecular Dynamics. Macromolecules, 2022, 55, 450-461.	4.8	14
2	Au–Ag Alloy Nanocorals with Optimal Broadband Absorption for Sunlight-Driven Thermoplasmonic Applications. ACS Applied Materials & Interfaces, 2022, 14, 28924-28935.	8.0	9
3	Large freestanding 2D covalent organic framework nanofilms exhibiting high strength and stiffness. Materials Today Chemistry, 2022, 26, 101007.	3.5	7
4	Titanium Dioxide as bio-sensor for local temperature detection. , 2021, , .		0
5	Kinetically Stable Nonequilibrium Goldâ€Cobalt Alloy Nanoparticles with Magnetic and Plasmonic Properties Obtained by Laser Ablation in Liquid. ChemPhysChem, 2021, 22, 657-664.	2.1	15
6	Contactless Temperature Sensing at the Microscale Based on Titanium Dioxide Raman Thermometry. Biosensors, 2021, 11, 102.	4.7	7
7	Silver nanoparticle aggregates: Wavelength dependence of their SERS properties in the first transparency window of biological tissues. Chemical Physics Impact, 2021, 2, 100014.	3.5	9
8	Hybrid Sol-Gel Surface-Enhanced Raman Sensor for Xylene Detection in Solution. Sensors, 2021, 21, 7912.	3.8	2
9	Nitrogenâ€Doped Mesoporous Carbon Electrodes Prepared from Templating Propylamineâ€Functionalized Silica. ChemElectroChem, 2020, 7, 1914-1921.	3.4	8
10	Biocompatible Temperature nanosensors based on Titanium dioxide. , 2020, 60, .		1
11	A Review on Surface-Enhanced Raman Scattering. Biosensors, 2019, 9, 57.	4.7	545
12	Fullerene functionalized gold nanoparticles for optical limiting of continuous wave lasers. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	7
13	Understanding lead iodide perovskite hysteresis and degradation causes by extensive electrical characterization. Solar Energy Materials and Solar Cells, 2019, 189, 43-52.	6.2	24
14	Surface-Enhanced Raman Spectroscopy: Principles, Substrates, and Applications. , 2018, , 89-164.		13
15	Platinum-free electrocatalysts for oxygen reduction reaction: Fe-Nx modified mesoporous carbon prepared from biosources. Journal of Power Sources, 2018, 402, 434-446.	7.8	36
16	SERS detection of food contaminants by means of portable Raman instruments. Journal of Raman Spectroscopy, 2018, 49, 954-981.	2.5	73
17	Validation of SERS enhancement factor measurements. Journal of Raman Spectroscopy, 2018, 49, 462-471.	2.5	15
18	Safe core-satellite magneto-plasmonic nanostructures for efficient targeting and photothermal treatment of tumor cells. Nanoscale, 2018, 10, 976-984.	5.6	30

ROBERTINO PILOT

#	Article	IF	CITATIONS
19	In Silico Stark Effect: Determination of Excited-State Polarizabilities of Squaraine Dyes. Journal of Physical Chemistry A, 2017, 121, 1587-1596.	2.5	5
20	Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics Condensed Matter, 2017, 29, 203002.	1.8	1,184
21	Oxidation effects on the SERS response of silver nanoprism arrays. RSC Advances, 2017, 7, 369-378.	3.6	55
22	Nitrogen and Sulfur Doped Mesoporous Carbons, Prepared from Templating Silica, as Interesting Material for Supercapacitors. ChemistrySelect, 2017, 2, 7082-7090.	1.5	23
23	Chemical and Electrochemical Stability of Nitrogen and Sulphur Doped Mesoporous Carbons. Electrochimica Acta, 2016, 197, 251-262.	5.2	53
24	Far- and near-field properties of gold nanoshells studied by photoacoustic and surface-enhanced Raman spectroscopies. Physical Chemistry Chemical Physics, 2015, 17, 21190-21197.	2.8	30
25	Wavelength dispersion of the local field intensity in silver–gold nanocages. Physical Chemistry Chemical Physics, 2015, 17, 7355-7365.	2.8	18
26	Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications. Nanoscale, 2015, 7, 13702-13714.	5.6	49
27	Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon, 2015, 95, 949-963.	10.3	252
28	SERS Properties of Gold Nanorods at Resonance with Molecular, Transverse, and Longitudinal Plasmon Excitations. Plasmonics, 2014, 9, 581-593.	3.4	36
29	Growth and optical properties of silver nanostructures obtained on connected anodic aluminum oxide templates. Nanotechnology, 2012, 23, 325604.	2.6	19
30	Holstein–Peirls–Hubbard trimer as a model for quadrupolar two-photon absorbing dyes. Physical Chemistry Chemical Physics, 2011, 13, 230-239.	2.8	2
31	Silver Nanoparticle Arrays on a DVD-Derived Template: An easy&cheap SERS Substrate. Plasmonics, 2011, 6, 725-733.	3.4	41
32	Design, fabrication and characterization of plasmonic gratings for SERS. Microelectronic Engineering, 2011, 88, 2717-2720.	2.4	16
33	Multiphoton absorption in polydiacetylenes adsorbed on metal nanostructures. Proceedings of SPIE, 2010, , .	0.8	0
34	Photoinduced electron-transfer in perylenediimide triphenylamine-based dendrimers: single photon timing and femtosecond transient absorption spectroscopy. Photochemical and Photobiological Sciences, 2008, 7, 597-604.	2.9	40
35	Switching of the fluorescence emission of single molecules between the locally excited and charge transfer states. Chemical Physics Letters, 2005, 401, 503-508.	2.6	33
36	Nonlinear Infrared and Optical Responses of a Holsteinâ `Peirlsâ `Hubbard Dimer. Journal of Physical Chemistry B, 2005, 109, 19082-19089.	2.6	4

#	Article	IF	CITATIONS
37	Photophysical study of photoinduced electron transfer in a bis-thiophene substituted peryleneimide. Photochemical and Photobiological Sciences, 2005, 4, 61-68.	2.9	34
38	Photophysical Study of Electron-Transfer and Energy-Hopping Processes in First-Generation Mono- and Multichromophoric Triphenylamine Core Dendrimers. Journal of Physical Chemistry B, 2004, 108, 10721-10731.	2.6	24