C Peter Constabel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6045682/publications.pdf

Version: 2024-02-01

56 papers 4,622 citations

172457 29 h-index 53 g-index

58 all docs

58 docs citations

58 times ranked 4792 citing authors

#	Article	IF	CITATIONS
1	Tannins in plant–herbivore interactions. Phytochemistry, 2011, 72, 1551-1565.	2.9	659
2	Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism Â. Plant Physiology, 2012, 158, 200-224.	4.8	278
3	MYB Repressors as Regulators of Phenylpropanoid Metabolism in Plants. Trends in Plant Science, 2019, 24, 275-289.	8.8	274
4	The Wound-, Pathogen-, and Ultraviolet B-Responsive <i>MYB134</i> Gene Encodes an R2R3 MYB Transcription Factor That Regulates Proanthocyanidin Synthesis in Poplar Â. Plant Physiology, 2009, 150, 924-941.	4.8	249
5	Polyphenol Oxidase from Hybrid Poplar. Cloning and Expression in Response to Wounding and Herbivory. Plant Physiology, 2000, 124, 285-296.	4.8	243
6	The Transcriptional Response of Hybrid Poplar (Populus trichocarpa x P. deltoids) to Infection by Melampsora medusae Leaf Rust Involves Induction of Flavonoid Pathway Genes Leading to the Accumulation of Proanthocyanidins. Molecular Plant-Microbe Interactions, 2007, 20, 816-831.	2.6	205
7	Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant Journal, 2002, 32, 701-712.	5.7	189
8	The MYB182 Protein Down-Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Poplar by Repressing Both Structural and Regulatory Flavonoid Genes Â. Plant Physiology, 2015, 167, 693-710.	4.8	177
9	Molecular analysis of poplar defense against herbivory: comparison of wound―and insect elicitor―nduced gene expression. New Phytologist, 2006, 172, 617-635.	7.3	164
10	The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion. BMC Genomics, 2012, 13, 395.	2.8	161
11	Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta, 2004, 220, 87-96.	3.2	159
12	Flavan-3-ols Are an Effective Chemical Defense against Rust Infection. Plant Physiology, 2017, 175, 1560-1578.	4.8	156
13	Two R2R3â€xscp>MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. Plant Journal, 2018, 96, 949-965.	5.7	137
14	Poplar MYB115 and MYB134 Transcription Factors Regulate Proanthocyanidin Synthesis and Structure. Plant Physiology, 2017, 174, 154-171.	4.8	122
15	Defensive Roles of Polyphenol Oxidase in Plants. , 2008, , 253-270.		117
16	Functional Analysis of the Kunitz Trypsin Inhibitor Family in Poplar Reveals Biochemical Diversity and Multiplicity in Defense against Herbivores Â. Plant Physiology, 2008, 146, 888-903.	4.8	110
17	A Kunitz trypsin inhibitor gene family from trembling aspen (Populus tremuloides Michx.): cloning, functional expression, and induction by wounding and herbivory. Plant Molecular Biology, 2001, 46, 347-359.	3.9	99
18	Gene expression profiling of systemically wound-induced defenses in hybrid poplar. Planta, 2004, 219, 936-947.	3.2	83

#	Article	IF	Citations
19	Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates. Physiologia Plantarum, 2001, 112, 552-558.	5.2	73
20	Rapid Alkalinization Factors in Poplar Cell Cultures. Peptide Isolation, cDNA Cloning, and Differential Expression in Leaves and Methyl Jasmonate-Treated Cells. Plant Physiology, 2003, 131, 814-823.	4.8	68
21	Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134. Planta, 2014, 240, 497-511.	3.2	61
22	Condensed tannins are inducible antioxidants and protect hybrid poplar against oxidative stress. Tree Physiology, 2019, 39, 345-355.	3.1	60
23	Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia, 2010, 164, 993-1004.	2.0	56
24	Proteomic analysis of hybrid poplar xylem sap. Phytochemistry, 2009, 70, 856-863.	2.9	41
25	The polyphenol oxidase gene family in poplar: phylogeny, differential expression and identification of a novel, vacuolar isoform. Planta, 2011, 234, 799-813.	3.2	40
26	Limited impact of elevated levels of polyphenol oxidase on tree-feeding caterpillars: assessing individual plant defenses with transgenic poplar. Oecologia, 2007, 154, 129-140.	2.0	39
27	Transgenic upregulation of the condensed tannin pathway in poplar leads to a dramatic shift in leaf palatability for two tree-feeding Lepidoptera. Journal of Chemical Ecology, 2014, 40, 150-158.	1.8	39
28	Functional characterization of two acyltransferases from Populus trichocarpa capable of synthesizing benzyl benzoate and salicyl benzoate, potential intermediates in salicinoid phenolic glycoside biosynthesis. Phytochemistry, 2015, 113, 149-159.	2.9	36
29	Influence of Genotype, Environment, and Gypsy Moth Herbivory on Local and Systemic Chemical Defenses in Trembling Aspen (Populus tremuloides). Journal of Chemical Ecology, 2015, 41, 651-661.	1.8	36
30	Molecular Controls of Proanthocyanidin Synthesis and Structure: Prospects for Genetic Engineering in Crop Plants. Journal of Agricultural and Food Chemistry, 2018, 66, 9882-9888.	5.2	33
31	Discovery of salicyl benzoate UDPâ€glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis. Plant Journal, 2020, 102, 99-115.	5.7	31
32	An improved butanol-HCl assay for quantification of water-soluble, acetone:methanol-soluble, and insoluble proanthocyanidins (condensed tannins). Plant Methods, 2017, 13, 63.	4.3	27
33	Metabolic engineering and potential functions of proanthocyanidins in poplar. Plant Signaling and Behavior, 2009, 4, 790-792.	2.4	26
34	Effects of Overproduction of Condensed Tannins and Elevated Temperature on Chemical and Ecological Traits of Genetically Modified Hybrid Aspens (Populus tremula \tilde{A} — P. tremuloides). Journal of Chemical Ecology, 2012, 38, 1235-1246.	1.8	25
35	Three polyphenol oxidases from hybrid poplar are differentially expressed during development and after wounding and elicitor treatment. Physiologia Plantarum, 2004, 122, 344-353.	5.2	23
36	Poplar MYB117 promotes anthocyanin synthesis and enhances flavonoid B-ring hydroxylation by up-regulating the flavonoid 3′,5′-hydroxylase gene. Journal of Experimental Botany, 2021, 72, 3864-3880.	4.8	23

#	Article	IF	CITATIONS
37	Biochemical characterization of two differentially expressed polyphenol oxidases from hybrid poplar. Phytochemistry, 2003, 64, 115-121.	2.9	22
38	The Impact of Genomics on Advances in Herbivore Defense and Secondary Metabolism in Populus. , 2010, , 279-305.		22
39	Evaluating Ascorbate Oxidase as a Plant Defense Against Leaf-Chewing Insects Using Transgenic Poplar. Journal of Chemical Ecology, 2008, 34, 1331-1340.	1.8	21
40	Molecular cloning and biochemical characterization of two UDP-glycosyltransferases from poplar. Phytochemistry, 2013, 91, 148-157.	2.9	21
41	Insect Regurgitant and Wounding Elicit Similar Defense Responses In Poplar Leaves. Plant Signaling and Behavior, 2007, 2, 1-3.	2.4	20
42	Shoot–root defense signaling and activation of root defense by leaf damage in poplarThis article is one of a selection of papers published in the Special Issue on Poplar Research in Canada Canadian Journal of Botany, 2007, 85, 1171-1181.	1.1	18
43	Polyphenol Oxidase as a Component of the Inducible Defense Response in Tomato against Herbivores. , 1996, , 231-252.		18
44	Condensed tannins as antioxidants that protect poplar against oxidative stress from drought and UVâ€B. Plant, Cell and Environment, 2022, 45, 362-377.	5.7	14
45	Phytochemical analysis of salal berry (Gaultheria shallon Pursh.), a traditionally-consumed fruit from western North America with exceptionally high proanthocyanidin content. Phytochemistry, 2018, 147, 203-210.	2.9	13
46	The Occurrence of Sulfated Salicinoids in Poplar and Their Formation by Sulfotransferase 1. Plant Physiology, 2020, 183, 137-151.	4.8	12
47	Evidence for the role and fate of water-insoluble condensed tannins in the short-term reduction of carbon loss during litter decay. Biogeochemistry, 2018, 137, 127-141.	3.5	11
48	MYB134-RNAi poplar plants show reduced tannin synthesis in leaves but not roots, and increased susceptibility to oxidative stress. Journal of Experimental Botany, 2020, 71, 6601-6611.	4.8	11
49	Molecular Biology and Biochemistry of Induced Insect Defense in Populus. Recent Advances in Phytochemistry, 2005, 39, 119-143.	0.5	9
50	Induction of acid phosphatase transcripts, protein and enzymatic activity by simulated herbivory of hybrid poplar. Phytochemistry, 2010, 71, 619-626.	2.9	8
51	CRISPR/Cas9 disruption of <i>UGT71L1</i> in poplar connects salicinoid and salicylic acid metabolism and alters growth and morphology. Plant Cell, 2022, 34, 2925-2947.	6.6	8
52	Anti-Herbivore Activity of Oregonin, a Diarylheptanoid Found in Leaves and Bark of Red Alder (Alnus) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf
53	Efficient purification of the diarylheptanoid oregonin from red alder (<scp><i>Alnus rubra</i></scp>) leaves and bark combining aqueous extraction, spray drying and flashâ€chromatography. Phytochemical Analysis, 2021, 32, 554-561.	2.4	4
54	Red alder defense mechanisms against western tent caterpillar defoliation. Canadian Journal of Forest Research, 2021, 51, 627-637.	1.7	3

#	Article	IF	CITATIONS
55	Novel Integration of Geopolymer Pavers, Silva Cells and Poplar Trees for In-Situ Treatment of Car-Wash Wastewater. Sustainability, 2020, 12, 8472.	3.2	1

Factors Affecting Foliar Oregonin and Condensed Tannin in Red Alder (Alnus rubra Bong.):
Phytochemicals Implicated In Defense Against Western Tent Caterpillar (Malacosoma californicum) Tj ETQq0 0 0 rgB / Overlack 10 Tf 50 56