
Pia R Kamstrup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6045640/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetically Elevated Lipoprotein(a) and Increased Risk of Myocardial Infarction. JAMA - Journal of the American Medical Association, 2009, 301, 2331.	7.4	977
2	Genetic Associations with Valvular Calcification and Aortic Stenosis. New England Journal of Medicine, 2013, 368, 503-512.	27.0	767
3	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	27.8	544
4	Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points—a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. European Heart Journal, 2016, 37, 1944-1958.	2.2	542
5	Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49, 1758-1766.	21.4	470
6	Association of <i>LPA</i> Variants With Risk of Coronary Disease and the Implications for Lipoprotein(a)-Lowering Therapies. JAMA Cardiology, 2018, 3, 619.	6.1	428
7	Elevated Lipoprotein(a) and Risk of Aortic Valve Stenosis in the General Population. Journal of the American College of Cardiology, 2014, 63, 470-477.	2.8	421
8	Extreme Lipoprotein(a) Levels and Risk of Myocardial Infarction in the General Population. Circulation, 2008, 117, 176-184.	1.6	408
9	Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics, 2018, 50, 26-41.	21.4	286
10	Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nature Genetics, 2017, 49, 1113-1119.	21.4	260
11	High lipoprotein(a) as a possible cause of clinical familial hypercholesterolaemia: a prospective cohort study. Lancet Diabetes and Endocrinology,the, 2016, 4, 577-587.	11.4	218
12	Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nature Genetics, 2017, 49, 1450-1457.	21.4	218
13	Extreme Lipoprotein(a) Levels and Improved Cardiovascular Risk Prediction. Journal of the American College of Cardiology, 2013, 61, 1146-1156.	2.8	210
14	Quantifying Atherogenic Lipoproteins: Current and Future Challenges in the Era of Personalized Medicine and Very Low Concentrations of LDL Cholesterol. A Consensus Statement from EAS and EFLM. Clinical Chemistry, 2018, 64, 1006-1033.	3.2	189
15	Lipoprotein(a)-Lowering by 50 mg/dL (105 nmol/L) May Be Needed to Reduce Cardiovascular Disease 20% in Secondary Prevention. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 255-266.	2.4	150
16	High lipoprotein(a) and high risk of mortality. European Heart Journal, 2019, 40, 2760-2770.	2.2	149
17	Genetic Evidence That Lipoprotein(a) Associates With Atherosclerotic Stenosis Rather Than Venous Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1732-1741.	2.4	146
18	Fasting Is Not Routinely Required for Determination of a Lipid Profile: Clinical and Laboratory Implications Including Flagging at Desirable Concentration Cutpoints—A Joint Consensus Statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Clinical Chemistry, 2016, 62, 930-946.	3.2	145

PIA R KAMSTRUP

#	Article	IF	CITATIONS
19	Increased Remnant Cholesterol Explains Part of Residual Risk of All-Cause Mortality in 5414 Patients with Ischemic Heart Disease. Clinical Chemistry, 2016, 62, 593-604.	3.2	138
20	Quantifying atherogenic lipoproteins for lipid-lowering strategies: Consensus-based recommendations from EAS and EFLM. Atherosclerosis, 2020, 294, 46-61.	0.8	137
21	Elevated Lipoprotein(a) and RiskÂofÂlschemic Stroke. Journal of the American College of Cardiology, 2019, 74, 54-66.	2.8	131
22	Quantifying atherogenic lipoproteins for lipid-lowering strategies: consensus-based recommendations from EAS and EFLM. Clinical Chemistry and Laboratory Medicine, 2020, 58, 496-517.	2.3	119
23	Lipoprotein(a) concentrations, isoform size, and risk of type 2 diabetes: a Mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2013, 1, 220-227.	11.4	108
24	Lipoprotein(a) and Cardiovascular Disease. Clinical Chemistry, 2021, 67, 154-166.	3.2	107
25	Elevated Lipoprotein(a) Levels, LPA Risk Genotypes, and Increased Risk of Heart Failure in the General Population. JACC: Heart Failure, 2016, 4, 78-87.	4.1	106
26	Comparison of 16 Serological SARS-CoV-2 Immunoassays in 16 Clinical Laboratories. Journal of Clinical Microbiology, 2021, 59, .	3.9	97
27	Lipoprotein(a) and ischemic heart disease—A causal association? A review. Atherosclerosis, 2010, 211, 15-23.	0.8	92
28	PCSK9 R46L Loss-of-Function Mutation Reduces Lipoprotein(a), LDL Cholesterol, and Risk of Aortic Valve Stenosis. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3281-3287.	3.6	89
29	Lipoprotein(a): Fasting and nonfasting levels, inflammation, and cardiovascular risk. Atherosclerosis, 2014, 234, 95-101.	0.8	83
30	Oxidized Phospholipids and Risk of Calcific Aortic Valve Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1570-1578.	2.4	60
31	Elevated Lipoprotein(a) Does Not Cause Low-Grade Inflammation Despite Causal Association With Aortic Valve Stenosis and Myocardial Infarction: A Study of 100 578 Individuals from the General Population. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2690-2699.	3.6	43
32	Estimating the Population Impact of Lp(a) Lowering on the Incidence of Myocardial Infarction and Aortic Stenosis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2421-2423.	2.4	38
33	Low lipoprotein(a) levels and risk of disease in a large, contemporary, general population study. European Heart Journal, 2021, 42, 1147-1156.	2.2	36
34	Lipoprotein(a) and risk of myocardial infarction – genetic epidemiologic evidence of causality. Scandinavian Journal of Clinical and Laboratory Investigation, 2011, 71, 87-93.	1.2	33
35	Copenhagen Baby Heart Study: a population study of newborns with prenatal inclusion. European Journal of Epidemiology, 2019, 34, 79-90.	5.7	32
36	Kringle IV Type 2, Not Low Lipoprotein(a), as a Cause of Diabetes: A Novel Genetic Approach Using SNPs Associated Selectively with Lipoprotein(a) Concentrations or with Kringle IV Type 2 Repeats. Clinical Chemistry, 2017, 63, 1866-1876.	3.2	28

PIA R KAMSTRUP

#	Article	IF	CITATIONS
37	Apolipoprotein(a) Kringle-IV Type 2 Copy Number Variation Is Associated with Venous Thromboembolism. PLoS ONE, 2016, 11, e0149427.	2.5	24
38	Pentanucleotide Repeat Polymorphism, Lipoprotein(a) Levels, and Risk of Ischemic Heart Disease. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3769-3776.	3.6	21
39	Elevated lipoprotein(a) in mitral and aortic valve calcification and disease: The Copenhagen General Population Study. Atherosclerosis, 2022, 349, 166-174.	0.8	21
40	Effect of APOE Îμ Genotype on Lipoprotein(a) and the Associated Risk of Myocardial Infarction and Aortic Valve Stenosis. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3390-3399.	3.6	20
41	Lipoprotein(a) Levels at Birth and in Early Childhood: The COMPARE Study. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 324-335.	3.6	20
42	Lipoprotein(a) and Body Mass Compound the Risk of Calcific Aortic Valve Disease. Journal of the American College of Cardiology, 2022, 79, 545-558.	2.8	12
43	Lipoprotein(a): the common, likely causal, yet elusive risk factor for cardiovascular disease. Journal of Lipid Research, 2017, 58, 1731-1732.	4.2	9
44	Lipoprotein(a) and familial hypercholesterolaemia – Authors' reply. Lancet Diabetes and Endocrinology,the, 2016, 4, 730-731.	11.4	2
45	Response to â€~Lipoprotein(a): it is not the cholesterol content: it is the apolipoprotein(a)!'. European Heart Journal, 2019, 40, 3577-3577.	2.2	2
46	Coagulation parameters in the newborn and infant– the Copenhagen Baby Heart and COMPARE studies. Clinical Chemistry and Laboratory Medicine, 2021, .	2.3	1