John J Lemasters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6045619/publications.pdf

Version: 2024-02-01

8181 3732 35,030 198 76 179 citations h-index g-index papers 203 203 203 41920 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
3	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
4	Selective degradation of mitochondria by mitophagy. Archives of Biochemistry and Biophysics, 2007, 462, 245-253.	3.0	1,385
5	The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1366, 177-196.	1.0	1,201
6	Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted Defense Against Oxidative Stress, Mitochondrial Dysfunction, and Aging. Rejuvenation Research, 2005, 8, 3-5.	1.8	1,081
7	Mechanisms of Hepatotoxicity. Toxicological Sciences, 2002, 65, 166-176.	3.1	1,043
8	Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 850, 436-448.	1.0	702
9	Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochemical and Biophysical Research Communications, 2003, 304, 463-470.	2.1	685
10	Apoptosis and Necrosis in the Liver: A Tale of Two Deaths?. Hepatology, 2006, 43, S31-S44.	7.3	613
11	Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology, 2003, 125, 1246-1257.	1.3	541
12	Mitochondrial calcium and the permeability transition in cell death. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1395-1401.	1.0	541
13	The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB Journal, 2001, 15, 1-17.	0.5	539
14	Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes. Nature, 1987, 325, 78-81.	27.8	521
15	Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology, 2004, 40, 1170-1179.	7.3	441
16	The Mitochondrial Permeability Transition Is Required for Tumor Necrosis Factor Alpha-Mediated Apoptosis and Cytochrome <i>c</i> Release. Molecular and Cellular Biology, 1998, 18, 6353-6364.	2.3	389
17	Functions of autophagy in normal and diseased liver. Autophagy, 2013, 9, 1131-1158.	9.1	384
18	Voltage-dependent anion channel (VDAC) as mitochondrial governator—Thinking outside the box. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 181-190.	3.8	377

#	Article	IF	CITATIONS
19	Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function?. FEBS Letters, 2002, 512, 1-7.	2.8	355
20	Reperfusion injury to endothelial cells following cold ischemic storage of rat livers. Hepatology, 1989, 10, 292-299.	7.3	349
21	Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. Journal of Bioenergetics and Biomembranes, 1999, 31, 305-319.	2.3	347
22	Role of Mitochondrial Inner Membrane Permeabilization in Necrotic Cell Death, Apoptosis, and Autophagy. Antioxidants and Redox Signaling, 2002, 4, 769-781.	5.4	331
23	Peroxynitrite-Induced Mitochondrial and Endonuclease-Mediated Nuclear DNA Damage in Acetaminophen Hepatotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 879-887.	2.5	319
24	Tracker Dyes to Probe Mitochondrial Autophagy (Mitophagy) in Rat Hepatocytes. Autophagy, 2006, 2, 39-46.	9.1	316
25	Kupffer cell activation and endothelial cell damage after storage of rat livers: Effects of reperfusion. Hepatology, 1991, 13, 83-95.	7.3	295
26	Inhibition of the Mitochondrial Permeability Transition by the Nonimmunosuppressive Cyclosporin Derivative NIM811. Molecular Pharmacology, 2002, 62, 22-29.	2.3	266
27	Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2024-H2034.	3.2	264
28	Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biology, 2014, 2, 749-754.	9.0	251
29	Acetaminophen-Induced Oxidant Stress and Cell Injury in Cultured Mouse Hepatocytes: Protection by N-Acetyl Cysteine. Toxicological Sciences, 2004, 80, 343-349.	3.1	249
30	c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicology and Applied Pharmacology, 2010, 246, 8-17.	2.8	234
31	Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. American Journal of Physiology - Cell Physiology, 1997, 273, C1783-C1792.	4.6	230
32	Cyclophilin D as a Drug Target. Current Medicinal Chemistry, 2003, 10, 1485-1506.	2.4	216
33	Voltage-dependent Anion Channels Modulate Mitochondrial Metabolism in Cancer Cells. Journal of Biological Chemistry, 2013, 288, 11920-11929.	3.4	197
34	Plasma membrane bleb formation and rupture: A common feature of hepatocellular injury. Hepatology, 1990, 11, 690-698.	7.3	189
35	Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology, 2003, 124, 494-503.	1.3	189
36	Free Tubulin Modulates Mitochondrial Membrane Potential in Cancer Cells. Cancer Research, 2010, 70, 10192-10201.	0.9	186

#	Article	IF	CITATIONS
37	Selective Loading of Rhod 2 into Mitochondria Shows Mitochondrial Ca2+Transients during the Contractile Cycle in Adult Rabbit Cardiac Myocytes. Biochemical and Biophysical Research Communications, 1997, 236, 738-742.	2.1	184
38	V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. American Journal of Physiology - Renal Physiology, 1999, 276, G1-G6.	3.4	166
39	Mitophagy Selectively Degrades Individual Damaged Mitochondria After Photoirradiation. Antioxidants and Redox Signaling, 2011, 14, 1919-1928.	5.4	166
40	Irreversible injury in anoxic hepatocytes precipitated by an abrupt increase in plasma membrane permeability. FASEB Journal, 1988, 2, 146-151.	0.5	165
41	Mitochondrial Bax Translocation Accelerates DNA Fragmentation and Cell Necrosis in a Murine Model of Acetaminophen Hepatotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 8-14.	2.5	161
42	Protection by acidotic pH against anoxic cell killing in perfused rat liver: evidence for a pH paradox. FASEB Journal, 1991, 5, 207-210.	0.5	153
43	The Mitochondrial Permeability Transition Mediates Both Necrotic and Apoptotic Death of Hepatocytes Exposed to Br-A23187. Toxicology and Applied Pharmacology, 1999, 154, 117-125.	2.8	148
44	ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect. Mitochondrion, 2014, 19, 78-84.	3.4	141
45	Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells. Biochemical Pharmacology, 2018, 148, 155-162.	4.4	139
46	Early midzonal cell death during low-flow hypoxia in the isolated, perfused rat liver: Protection by allopurinol. Hepatology, 1988, 8, 585-590.	7.3	138
47	Mitochondrial Calcium Transients in Adult Rabbit Cardiac Myocytes: Inhibition by Ruthenium Red and Artifacts Caused by Lysosomal Loading of Ca2+-Indicating Fluorophores. Biophysical Journal, 2000, 79, 39-50.	0.5	136
48	The Mitochondrial Permeability Transition Augments Fas-induced Apoptosis in Mouse Hepatocytes. Journal of Biological Chemistry, 2000, 275, 11814-11823.	3.4	135
49	LEUKOCYTE ADHESION AND CELL DEATH FOLLOWING ORTHOTOPIC LIVER TRANSPLANTATION IN THE RAT. Transplantation, 1991, 51, 959-964.	1.0	134
50	Dying a Thousand Deaths: Redundant Pathways From Different Organelles to Apoptosis and Necrosis. Gastroenterology, 2005, 129, 351-360.	1.3	133
51	Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation. American Journal of Physiology - Cell Physiology, 2011, 300, C308-C317.	4.6	132
52	Protection by acidotic pH and fructose against lethal injury to rat hepatocytes from mitochondrial inhibitors, ionophores and oxidant chemicals. Biochemical and Biophysical Research Communications, 1990, 167, 600-606.	2,1	128
53	A novel cytotoxicity screening assay using a multiwell fluorescence scanner. Toxicology and Applied Pharmacology, 1992, 115, 147-155.	2.8	128
54	Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology, 2008, 48, 1644-1654.	7.3	126

#	Article	IF	CITATIONS
55	Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury. Free Radical Research, 2011, 45, 156-164.	3.3	125
56	Contribution of increased mitochondrial free Ca2+ to the mitochondrial permeability transition induced bytert-butylhydroperoxide in rat hepatocytes. Hepatology, 1999, 29, 1523-1531.	7.3	120
57	Progression of subcellular changes during chemical hypoxia to cultured rat hepatocytes: A laser scanning confocal microscopic study. Hepatology, 1995, 21, 1361-1372.	7.3	111
58	Contribution of adenosine A2 receptors and cyclic adenosine monophosphate to protective ischemic preconditioning of sinusoidal endothelial cells against storage/reperfusion injury in rat livers. Hepatology, 2000, 32, 297-302.	7.3	111
59	Imaging of Mitochondrial Polarization and Depolarization with Cationic Fluorophores. Methods in Cell Biology, 2007, 80, 283-295.	1.1	111
60	Novel mechanisms in chemically induced hepatotoxicity 1. FASEB Journal, 1994, 8, 1285-1295.	0.5	108
61	Apoptosis-Inducing Factor Modulates Mitochondrial Oxidant Stress in Acetaminophen Hepatotoxicity. Toxicological Sciences, 2011, 122, 598-605.	3.1	108
62	Nitric oxide protects rat hepatocytes against reperfusion injury mediated by the mitochondrial permeability transition. Hepatology, 2004, 39, 1533-1543.	7.3	105
63	Reperfusion injury to donor livers stored for transplantation. Liver Transplantation, 1995, 1, 124-138.	1.8	103
64	Mitochondrial dysfunction and cytoskeletal disruption during chemical hypoxia to cultured rat hepatic sinusoidal endothelial cells: The pH paradox and cytoprotection by glucose, acidotic pH, and glycine. Hepatology, 1998, 27, 1039-1049.	7.3	103
65	Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy, 2009, 5, 1099-1106.	9.1	101
66	Minocycline and N-methyl-4-isoleucine cyclosporin (NIM811) mitigate storage/reperfusion injury after rat liver transplantation through suppression of the mitochondrial permeability transition. Hepatology, 2008, 47, 236-246.	7.3	100
67	Mitochondrial free calcium transients during excitation-contraction coupling in rabbit cardiac myocytes. FEBS Letters, 1996, 382, 31-36.	2.8	96
68	Warburg Revisited: Regulation of Mitochondrial Metabolism by Voltage-Dependent Anion Channels in Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 637-641.	2.5	93
69	Mitochondrial Oxygen Radical Formation during Reductive and Oxidative Stress to Intact Hepatocytes. Bioscience Reports, 1997, 17, 281-291.	2.4	91
70	Autophagy in Alcoholâ€Induced Liver Diseases. Alcoholism: Clinical and Experimental Research, 2012, 36, 1301-1308.	2.4	91
71	TRAIL-mediated apoptosis requires NF-k B inhibition and the mitochondrial permeability transition in human hepatoma cells. Hepatology, 2002, 36, 1498-1508.	7. 3	88
72	Modulation of mitochondrial membrane permeability in pathogenesis, autophagy and control of metabolism. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, S31-S37.	2.8	87

#	Article	IF	CITATIONS
73	Lysosomal Iron Mobilization and Induction of the Mitochondrial Permeability Transition in Acetaminophen-Induced Toxicity to Mouse Hepatocytes. Toxicological Sciences, 2010, 117, 101-108.	3.1	87
74	Phosphorylation of Voltage-Dependent Anion Channel by Serine/Threonine Kinases Governs Its Interaction with Tubulin. PLoS ONE, 2011, 6, e25539.	2.5	87
75	Low Dose Acetaminophen Induces Reversible Mitochondrial Dysfunction Associated with Transient c-Jun N-Terminal Kinase Activation in Mouse Liver. Toxicological Sciences, 2016, 150, 204-215.	3.1	86
76	The Oxygen Tension Modulates Acetaminophen-Induced Mitochondrial Oxidant Stress and Cell Injury in Cultured Hepatocytes. Toxicological Sciences, 2010, 117, 515-523.	3.1	81
77	Mechanisms of Pathogenesis in Drug Hepatotoxicity Putting the Stress on Mitochondria. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2010, 10, 98-111.	3.4	76
78	Bid activates multiple mitochondrial apoptotic mechanisms in primary hepatocytes after death receptor engagement. Gastroenterology, 2003, 125, 854-867.	1.3	75
79	Activation of the oxygen-sensing signal cascade prevents mitochondrial injury after mouse liver ischemia-reperfusion. American Journal of Physiology - Renal Physiology, 2008, 295, G823-G832.	3.4	75
80	DEVELOPMENT OF A NEW METHOD FOR HEPATIC REARTERIALIZATION IN RAT ORTHOTOPIC LIVER TRANSPLANTATION. Transplantation, 1993, 56, 19-23.	1.0	73
81	Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy. BioFactors, 1998, 8, 283-285.	5.4	72
82	Mitochondrial permeability transition in rat hepatocytes after anoxia/reoxygenation: role of Ca ²⁺ -dependent mitochondrial formation of reactive oxygen species. American Journal of Physiology - Renal Physiology, 2012, 302, G723-G731.	3.4	71
83	Ischemic preconditioning of rat livers against cold storage-reperfusion injury: Role of nonparenchymal cells and the phenomenon of heterologous preconditioning. Liver Transplantation, 2001, 7, 292-299.	2.4	70
84	Mitochondrial Permeability Transition in Liver Ischemia and Reperfusion: Role of c-Jun N-Terminal Kinase 2. Transplantation, 2008, 85, 1500-1504.	1.0	69
85	Heat Shock Suppresses the Permeability Transition in Rat Liver Mitochondria. Journal of Biological Chemistry, 2003, 278, 16755-16760.	3.4	68
86	Closure of VDAC causes oxidative stress and accelerates the Ca2+-induced mitochondrial permeability transition in rat liver mitochondria. Archives of Biochemistry and Biophysics, 2010, 495, 174-181.	3.0	67
87	Suppression of lipopolysaccharide-stimulated release of tumor necrosis factor by adenosine: Evidence for A2 receptors on rat kupffer cells. Hepatology, 1994, 19, 1445-1452.	7.3	64
88	Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Reports, 2020, 21, e50202.	4. 5	64
89	Minocycline and doxycycline, but not other tetracycline-derived compounds, protect liver cells from chemical hypoxia and ischemia/reperfusion injury by inhibition of the mitochondrial calcium uniporter. Toxicology and Applied Pharmacology, 2013, 273, 172-179.	2.8	63
90	Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: Protection by starch-desferal and minocycline. Free Radical Biology and Medicine, 2016, 97, 418-426.	2.9	59

#	Article	IF	CITATIONS
91	Discrimination of depolarized from polarized mitochondria by confocal fluorescence resonance energy transfer. Archives of Biochemistry and Biophysics, 2004, 422, 145-152.	3.0	56
92	Acid sphingomyelinase promotes mitochondrial dysfunction due to glutamate-induced regulated necrosis. Journal of Lipid Research, 2018, 59, 312-329.	4.2	55
93	Translocation of iron from lysosomes to mitochondria during ischemia predisposes to injury after reperfusion in rat hepatocytes. Free Radical Biology and Medicine, 2013, 63, 243-253.	2.9	54
94	Mitoferrin-2-dependent Mitochondrial Iron Uptake Sensitizes Human Head and Neck Squamous Carcinoma Cells to Photodynamic Therapy. Journal of Biological Chemistry, 2013, 288, 677-686.	3.4	53
95	Mitochondrial Ca2+ transients in cardiac myocytes during the excitation-contraction cycle: effects of pacing and hormonal stimulation. Journal of Bioenergetics and Biomembranes, 1998, 30, 207-222.	2.3	52
96	Sphingosine kinase-2 inhibition improves mitochondrial function and survival after hepatic ischemia–reperfusion. Journal of Hepatology, 2012, 56, 137-145.	3.7	51
97	Acute Ethanol Causes Hepatic Mitochondrial Depolarization in Mice: Role of Ethanol Metabolism. PLoS ONE, 2014, 9, e91308.	2.5	51
98	Evolution of Voltage-Dependent Anion Channel Function: From Molecular Sieve to Governator to Actuator of Ferroptosis. Frontiers in Oncology, 2017, 7, 303.	2.8	51
99	PROTECTION BY CAROLINA RINSE SOLUTION, ACIDOTIC pH, AND GLYCINE AGAINST LETHAL REPERFUSION INJURY TO SINUSOIDAL ENDOTHELIAL CELLS OF RAT LIVERS STORED FOR TRANSPLANTATION1. Transplantation, 1996, 62, 1549-1558.	1.0	50
100	Ethanol exposure decreases mitochondrial outer membrane permeability in cultured rat hepatocytes. Archives of Biochemistry and Biophysics, 2009, 481, 226-233.	3.0	49
101	Comparison of peptidoglycan-polysaccharide and lipopolysaccharide stimulation of Kupffer cells to produce tumor necrosis factor and interleukin-1. Hepatology, 1994, 19, 1013-1022.	7.3	48
102	HDAC1 localizes to the mitochondria of cardiac myocytes and contributes to early cardiac reperfusion injury. Journal of Molecular and Cellular Cardiology, 2018, 114, 309-319.	1.9	48
103	The mitochondrial permeability transition and the calcium, oxygen and pH paradoxes: one paradox after another. Cardiovascular Research, 1999, 44, 470-473.	3.8	47
104	Ethanol Suppresses Ureagenesis in Rat Hepatocytes. Journal of Biological Chemistry, 2012, 287, 7692-7700.	3.4	45
105	The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice. International Journal of Physiology, Pathophysiology and Pharmacology, 2016, 8, 14-27.	0.8	45
106	ATP/ADP Turnover and Import of Glycolytic ATP into Mitochondria in Cancer Cells Is Independent of the Adenine Nucleotide Translocator. Journal of Biological Chemistry, 2016, 291, 19642-19650.	3.4	44
107	Mitotracker probes and mitochondrial membrane potential. Shock, 2013, 39, 543.	2.1	43
108	NIM811 ($\langle i \rangle N \langle i \rangle$ -Methyl-4-isoleucine Cyclosporine), a Mitochondrial Permeability Transition Inhibitor, Attenuates Cholestatic Liver Injury but Not Fibrosis in Mice. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 699-706.	2.5	42

#	Article	IF	CITATIONS
109	Destruction of Kupffer cells increases survival and reduces graft injury after transplantation of fatty livers from ethanol-treated rats. Liver Transplantation, 1996, 2, 383-387.	1.8	40
110	Lipid order in hepatocyte plasma membrane blebs during ATP depletion measured by digitized video fluorescence polarization microscopy. FASEB Journal, 1991, 5, 2078-2084.	0.5	39
111	LPS receptor CD14 participates in release of TNF-α in RAW 264.7 and peritoneal cells but not in Kupffer cells. American Journal of Physiology - Renal Physiology, 1998, 275, G39-G46.	3.4	39
112	Mitochondrial protein import is regulated by p17/PERMIT to mediate lipid metabolism and cellular stress. Science Advances, 2019, 5, eaax1978.	10.3	39
113	NIM811 Prevents Mitochondrial Dysfunction, Attenuates Liver Injury, and Stimulates Liver Regeneration After Massive Hepatectomy. Transplantation, 2011, 91, 406-412.	1.0	39
114	Regulation of mitochondrial function by voltage dependent anion channels in ethanol metabolism and the Warburg effect. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1536-1544.	2.6	38
115	Compartmentation of Mitochondrial and Oxidative Metabolism in Growing Hair Follicles: A Ring of Fire. Journal of Investigative Dermatology, 2017, 137, 1434-1444.	0.7	38
116	Reperfusion injury to endothelial cells after cold storage of rat livers: protection by mildly acidic pH and lack of protection by antioxidants. Transplant International, 1995, 8, 77-85.	1.6	36
117	A Screen Using iPSC-Derived Hepatocytes Reveals NAD+ as a Potential Treatment for mtDNA Depletion Syndrome. Cell Reports, 2018, 25, 1469-1484.e5.	6.4	36
118	ADAM17 promotes proliferation of collecting duct kidney epithelial cells through ERK activation and increased glycolysis in polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2014, 307, F551-F559.	2.7	35
119	Mitophagy in hepatocytes: Types, initiators and role in adaptive ethanol metabolism. Liver Research, 2018, 2, 125-132.	1.4	34
120	A Unifying Hypothesis Linking Hepatic Adaptations for Ethanol Metabolism to the Proinflammatory and Profibrotic Events of Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 2018, 42, 2072-2089.	2.4	34
121	Inhibition of Sphingosine Kinase-2 Suppresses Inflammation and Attenuates Graft Injury after Liver Transplantation in Rats. PLoS ONE, 2012, 7, e41834.	2.5	34
122	[29] Confocal imaging of Ca2+, pH, electrical potential, and membrane permeability in single living cells. Methods in Enzymology, 1999, 302, 341-358.	1.0	33
123	Lysosomal Instability and Cathepsin <scp>B</scp> Release during Acetaminophen Hepatotoxicity. Basic and Clinical Pharmacology and Toxicology, 2012, 111, 417-425.	2.5	30
124	Erastin-Like Anti-Warburg Agents Prevent Mitochondrial Depolarization Induced by Free Tubulin and Decrease Lactate Formation in Cancer Cells. SLAS Discovery, 2018, 23, 23-33.	2.7	29
125	Dephosphorylation of the Rieske iron–sulfur protein after induction of the mitochondrial permeability transition. Biochemical and Biophysical Research Communications, 2005, 334, 829-837.	2.1	28
126	Inhibition of the mitochondrial permeability transition by protein kinase A in rat liver mitochondria and hepatocytes. Biochemical Journal, 2010, 431, 411-421.	3.7	28

#	Article	IF	CITATIONS
127	Methyl palmitate prevents Kupffer cell activation and improves survival after orthotopic liver transplantation in the rat. Transplant International, 1991, 4, 215-220.	1.6	27
128	Confocal microscopy of the mitochondrial permeability transition in necrotic and apoptotic cell death. Biochemical Society Symposia, 1999, 66, 205-222.	2.7	26
129	Gentle organ manipulation during harvest as a key determinant of survival of fatty livers after transplantation in the rat. Transplant International, 1999, 12, 351-359.	1.6	25
130	Minocycline and Doxycycline, But Not Tetracycline, Mitigate Liver and Kidney Injury After Hemorrhagic Shock/Resuscitation. Shock, 2014, 42, 256-263.	2.1	25
131	2′,3′-Cyclic nucleotide 3′-phosphodiesterase as a messenger of protection of the mitochondrial function during melatonin treatment in aging. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 94-103.	2.6	24
132	N-acetyl-l-cysteine sensitizes pancreatic cancers to gemcitabine by targeting the NFÎ $^\circ$ B pathway. Biomedicine and Pharmacotherapy, 2014, 68, 855-864.	5.6	23
133	The role of mitochondrial KATP channel in anti-inflammatory effects of uridine in endotoxemic mice. Archives of Biochemistry and Biophysics, 2018, 654, 70-76.	3.0	23
134	Reperfusion injury to endothelial cells after cold storage of rat livers: protection by mildly acidic pH and lack of protection by antioxidants. Transplant International, 1995, 8, 77-85.	1.6	22
135	Rusty notions of cell injury. Journal of Hepatology, 2004, 40, 696-698.	3.7	20
136	Lysosomal Signaling Enhances Mitochondriaâ€Mediated Photodynamic Therapy in A431 Cancer Cells: Role of Iron. Photochemistry and Photobiology, 2012, 88, 461-468.	2.5	20
137	Suppression of iron mobilization from lysosomes to mitochondria attenuates liver injury after acetaminophen overdose in vivo in mice: Protection by minocycline. Toxicology and Applied Pharmacology, 2020, 392, 114930.	2.8	20
138	New Micro-Optical Methods to Study Metabolism in Periportal and Pericentral Regions of the Liver Lobule'. Drug Metabolism Reviews, 1988, 19, 263-281.	3.6	18
139	Role of inducible nitric oxide synthase in mitochondrial depolarization and graft injury after transplantation of fatty livers. Free Radical Biology and Medicine, 2012, 53, 250-259.	2.9	18
140	Mitochondrial depolarization after acute ethanol treatment drives mitophagy in living mice. Autophagy, 2022, 18, 2671-2685.	9.1	18
141	Glutamate contributes to alcohol hepatotoxicity by enhancing oxidative stress in mitochondria. Journal of Bioenergetics and Biomembranes, 2017, 49, 253-264.	2.3	17
142	The role of Iron in lipid peroxidation and protein nitration during acetaminophen-induced liver injury in mice. Toxicology and Applied Pharmacology, 2022, 445, 116043.	2.8	17
143	Aldehyde dehydrogenase-2 activation decreases acetaminophen hepatotoxicity by prevention of mitochondrial depolarization. Toxicology and Applied Pharmacology, 2020, 396, 114982.	2.8	16
144	Metabolic implications of non-electrogenic ATP/ADP exchange in cancer cells: A mechanistic basis for the Warburg effect. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148410.	1.0	16

#	Article	IF	Citations
145	Ethanol and High Cholesterol Diet Causes Severe Steatohepatitis and Early Liver Fibrosis in Mice. PLoS ONE, 2016, 11, e0163342.	2.5	16
146	Possible role of the mitochondrial outer membrane as an oncotic regulator of mitochondrial volume. FEBS Letters, 1978, 88, 10-14.	2.8	14
147	Effect of short-term ethanol treatment on voltage-dependent calcium channels in kupffer cells. Hepatology, 1993, 18, 400-405.	7. 3	14
148	Improvement of liver injury and survival by JNK2 and iNOS deficiency in liver transplants from cardiac death mice. Journal of Hepatology, 2015, 63, 68-74.	3.7	14
149	Near thermodynamic equilibrium of oxidative phosphorylation by inverted inner membrane vesicles of rat liver mitochondria. FEBS Letters, 1980, 110, 96-100.	2.8	12
150	Lack of metabolic effects of cholecystokinin on hepatocytes. Hepatology, 1990, 12, 301-305.	7.3	11
151	Signaling from lysosomes enhances mitochondria-mediated photodynamic therapy in cancer cells. Proceedings of SPIE, 2009, 7380, 1-8.	0.8	11
152	Carbenoxolone induces permeability transition pore opening in rat mitochondria via the translocator protein TSPO and connexin43. Archives of Biochemistry and Biophysics, 2014, 558, 87-94.	3.0	11
153	Gentle organ manipulation during harvest as a key determinant of survival of fatty livers after transplantation in the rat. Transplant International, 1999, 12, 351-359.	1.6	11
154	Role of mitochondrial depolarization and disrupted mitochondrial homeostasis in non-alcoholic steatohepatitis and fibrosis in mice. International Journal of Physiology, Pathophysiology and Pharmacology, 2019, 11, 190-204.	0.8	11
155	Minocycline Decreases Liver Injury after Hemorrhagic Shock and Resuscitation in Mice. HPB Surgery, 2012, 2012, 1-9.	2.2	10
156	Hepatotoxicity Due to Mitochondrial Injury. , 2013, , 85-100.		10
157	Effect of surface-potential modulators on the opening of lipid pores in liposomal and mitochondrial inner membranes induced by palmitate and calcium ions. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2200-2205.	2.6	10
158	Apoptosis and the laws of thermodynamics. Nature Cell Biology, 2000, 2, E172-E172.	10.3	9
159	Cyclosporin A in left ventricular remodeling after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H53-H59.	3.2	9
160	Aldehyde dehydrogenase-2 activation by Alda-1 decreases necrosis and fibrosis after bile duct ligation in mice. Free Radical Biology and Medicine, 2019, 145, 136-145.	2.9	9
161	Amino acids in rinse effluents as a predictor of graft function after transplantation of fatty livers in rats. Transplant International, 1999, 12, 168-175.	1.6	8
162	A new method to monitor Kupffer cell phagocytosis continuously in perfused rat liver. Hepatology, 1991, 13, 567-574.	7.3	7

#	Article	IF	Citations
163	Effect of the CRAC Peptide, VLNYYVW, on mPTP Opening in Rat Brain and Liver Mitochondria. International Journal of Molecular Sciences, 2016, 17, 2096.	4.1	7
164	Molecular Mechanisms of Cell Death. , 2018, , 1-24.		7
165	Comparison of peptidoglycan-polysaccharide and lipopolysaccharide stimulation of Kupffer cells to produce tumor necrosis factor and interleukin-1. Hepatology, 1994, 19, 1013-1022.	7.3	7
166	Effect of short-term ethanol treatment on voltage-dependent calcium channels in Kupffer cells. Hepatology, 1993, 18, 400-405.	7.3	6
167	Amino acids in rinse effluents as a predictor of graft function after transplantation of fatty livers in rats. Transplant International, 1999, 12, 168-175.	1.6	5
168	ICAM-1 Upregulation in Ethanol-Induced Fatty Murine Livers Promotes Injury and Sinusoidal Leukocyte Adherence after Transplantation. HPB Surgery, 2012, 2012, 1-10.	2.2	5
169	Editorial: Uncovering the Function of the Mitochondrial Protein VDAC in Health and Disease: From Structure-Function to Novel Therapeutic Strategies. Frontiers in Oncology, 2017, 7, 320.	2.8	5
170	Imaging of Mitochondrial pH Using SNARF-1. Methods in Molecular Biology, 2018, 1782, 351-356.	0.9	5
171	Quenching or Misalignment? Confocal Microscopy Onset of the Mitochondrial Permeability Transition in Cultured Hepatocytes. Microscopy and Microanalysis, 1999, 5, 468-469.	0.4	4
172	C-Jun N-Terminal Kinase 2 Promotes Liver Injury via the Mitochondrial Permeability Transition after Hemorrhage and Resuscitation. HPB Surgery, 2012, 2012, 1-9.	2.2	4
173	Transient activation of hepatic glycogenolysis by thrombin in perfused rat livers. FEBS Journal, 1992, 208, 753-759.	0.2	3
174	Disrupted Renal Mitochondrial Homeostasis after Liver Transplantation in Rats. PLoS ONE, 2015, 10, e0140906.	2.5	3
175	8-pCPT-cGMP prevents mitochondrial depolarization and improves the outcome of steatotic partial liver transplantation. International Journal of Physiology, Pathophysiology and Pharmacology, 2017, 9, 69-83.	0.8	3
176	Platanosides, a Potential Botanical Drug Combination, Decrease Liver Injury Caused by Acetaminophen Overdose in Mice. Journal of Natural Products, 2022, 85, 1779-1788.	3.0	3
177	Is there release of mitochondrial calcium in toxic injury?. Hepatology, 1990, 11, 902-903.	7. 3	2
178	Cyclosporine in Acute Myocardial Infarction. New England Journal of Medicine, 2008, 359, 2286-2289.	27.0	2
179	Minocycline protects against the mitochondria permeability transition after both warm and cold ischemia-reperfusion. Hepatology, 2010, 51, 349-350.	7.3	2
180	650 Activation of Aldehyde Dehydrogenase-2 Attenuates Chronic Ethanol-Induced Steatohepatitis. Gastroenterology, 2015, 148, S-989-S-990.	1.3	2

#	Article	IF	Citations
181	Molecular Mechanisms of Cell Death. , 2009, , 3-24.		1
182	7 Enhanced efficacy of photodynamic therapy via an iron–lysosome–mitochondria connection. Series in Cellular and Clinical Imaging, 2017, , 117-130.	0.2	1
183	Confocal Imaging of Both Mitochondrial and Cytosolic Free Ca2+ in Cardiac Myocytes Co-Loaded with Rhod 2 and Fluo 3: Inhibition by Ruthenium Red of Mitochondrial but not Cytosolic Ca2+ Transients. Microscopy and Microanalysis, 1998, 4, 448-449.	0.4	0
184	Use of Fluorescent Reporters to Measure Mitochondrial Membrane Potential and the Mitochondrial Permeability Transition., 0,, 413-431.		0
185	Molecular Mechanisms of Cell Death. , 2010, , 3-14.		0
186	Reply to "Letter to the editor: â€~Cyclosporin A in left ventricular remodeling after myocardial infarction'― American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H778-H779.	3.2	0
187	Voltage-Dependent Anion Channels and Tubulin: Bioenergetic Controllers in Cancer Cells. Biological and Medical Physics Series, 2017, , 121-140.	0.4	0
188	Molecular mechanisms of cell death., 2020,, 1-18.		0
189	Accelerated Mitochondrial Reactive Oxygen Species Formation Induces Onsá ² ,t of the Mitochondrial Permeability Transition and Mitochondrial Swelling in Cultured Hepatocytes After TNFα Exposure. Microscopy and Microanalysis, 2001, 7, 604-605.	0.4	0
190	ICAMâ€1 UPREGULATION IN FATTY LIVERS OF ETHANOLâ€TREATED DONOR MICE PROMOTES INJURY AND SINUSOIDAL LEUKOCYTE ADHERENCE AFTER TRANSPLANTATION. FASEB Journal, 2007, 21, A1218.	0.5	0
191	Dynamics of Mitophagy During Nutrient Deprivation to Hepatocytes. FASEB Journal, 2007, 21, A669.	0.5	0
192	Intravital Imaging of Liver Function: Moving Beyond Microcirculation. FASEB Journal, 2007, 21, A88.	0.5	0
193	THE MITOCHONDRIAL PERMEABILITY TRANSITION (MPT) AFTER LIVER ISCHEMIA AND REPERFUSION: ROLE OF Câ€JUN Nâ€TERMINAL KINASE 2 (JNK2). FASEB Journal, 2008, 22, 1190.7.	0.5	0
194	Suppression of the mitochondrial permeability transition (MPT) with NIM811 mitigates storage/reperfusion injury and improves graft survival after rat liver transplantation (LT). FASEB Journal, 2008, 22, 730.6.	0.5	0
195	Role of Ethanol Metabolism in Intravital Hepatic Mitochondrial Depolarization. FASEB Journal, 2010, 24, 665.7.	0.5	0
196	Ischemiaâ€induced mobilization of lysosomal iron predisposes rat hepatocytes to ischemiaâ€reperfusion (IR) injury. FASEB Journal, 2012, 26, 678.6.	0.5	0
197	A New Membrane Potential (ΔΒ)â€Independent Iron Indicator Selectively Detects Mitochondrial Chelatable Iron but Not Calcium in Living Cells. FASEB Journal, 2018, 32, 657.6.	0.5	0
198	A novel role of sphingolipids and mitochondria in glutamateâ€induced programmed necrosis in oligodendrocytes. FASEB Journal, 2018, 32, 540.3.	0.5	0