Daniel Ansari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6044638/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Order processing of number symbols is influenced by direction, but not format. Quarterly Journal of Experimental Psychology, 2022, 75, 98-117.	1.1	4
2	Sharpening, focusing, and developing: A study of change in nonsymbolic number comparison skills and math achievement in 1st grade. Developmental Science, 2022, 25, e13194.	2.4	5
3	Extending ideas of numerical order beyond the count-list from kindergarten to first grade. Cognition, 2022, 223, 105019.	2.2	11
4	Disentangling the individual and contextual effects of math anxiety: A global perspective. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
5	Linking Cognitive Neuroscientific Research to Educational Practice in the Classroom. , 2022, , 537-553.		0
6	Children's attention to numerical quantities relates to verbal number knowledge: An introduction to the Buildâ€Aâ€Train task. Developmental Science, 2022, 25, .	2.4	0
7	Situational factors shape moral judgements in the trolley dilemma in Eastern, Southern and Western countries in a culturally diverse sample. Nature Human Behaviour, 2022, 6, 880-895.	12.0	15
8	Number symbols are processed more automatically than nonsymbolic numerical magnitudes: Findings from a Symbolic-Nonsymbolic Stroop task. Acta Psychologica, 2022, 228, 103644.	1.5	1
9	Identifying Children with Persistent Developmental Dyscalculia from a 2â€min Test of Symbolic and Nonsymbolic Numerical Magnitude Processing. Mind, Brain, and Education, 2021, 15, 88-102.	1.9	5
10	Symbols Are Special: An fMRI Adaptation Study of Symbolic, Nonsymbolic, and Non-Numerical Magnitude Processing in the Human Brain. Cerebral Cortex Communications, 2021, 2, tgab048.	1.6	6
11	What has changed in 18 years? Reflections on Ansari & Karmiloff-Smith (2002). , 2021, , 151-158.		0
12	Kindergarteners' symbolic number abilities predict nonsymbolic number abilities and math achievement in grade 1 Developmental Psychology, 2021, 57, 471-488.	1.6	14
13	Integrating numerical cognition research and mathematics education to strengthen the teaching and learning of early number. British Journal of Educational Psychology, 2021, 91, 1073-1109.	2.9	4
14	Shared Neural Circuits for Visuospatial Working Memory and Arithmetic in Children and Adults. Journal of Cognitive Neuroscience, 2021, 33, 1003-1019.	2.3	11
15	Exploring the Implementation of Early Math Assessments in Kindergarten Classrooms: A <scp>Researchâ€Practice</scp> Collaboration. Mind, Brain, and Education, 2021, 15, 311-321.	1.9	1
16	Domain-general and domain-specific influences on emerging numerical cognition: Contrasting uni-and bidirectional prediction models. Cognition, 2021, 215, 104816.	2.2	15
17	Sulcation of the intraparietal sulcus is related to symbolic but not non-symbolic number skills. Developmental Cognitive Neuroscience, 2021, 51, 100998.	4.0	6
18	From Counting to Retrieving: Neural Networks Underlying Alphabet Arithmetic Learning. Journal of Cognitive Neuroscience, 2021, 34, 16-33.	2.3	4

#	Article	IF	CITATIONS
19	Challenging the neurobiological link between number sense and symbolic numerical abilities. Annals of the New York Academy of Sciences, 2020, 1464, 76-98.	3.8	32
20	The relation between subitizable symbolic and nonâ€symbolic number processing over the kindergarten school year. Developmental Science, 2020, 23, e12884.	2.4	23
21	Do infants have a sense of numerosity? A p urve analysis of infant numerosity discrimination studies. Developmental Science, 2020, 23, e12897.	2.4	4
22	Teachers as Orchestrators of Neuronal Plasticity: Effects of Teaching Practices on the Brain. Mind, Brain, and Education, 2020, 14, 415-428.	1.9	11
23	The neural basis of metacognitive monitoring during arithmetic in the developing brain. Human Brain Mapping, 2020, 41, 4562-4573.	3.6	15
24	The "Inferior Temporal Numeral Area―distinguishes numerals from other character categories during passive viewing: A representational similarity analysis. NeuroImage, 2020, 214, 116716.	4.2	8
25	A comes before B, like 1 comes before 2. Is the parietal cortex sensitive to ordinal relationships in both numbers and letters? An fMRIâ€adaptation study. Human Brain Mapping, 2020, 41, 1591-1610.	3.6	10
26	What explains the relationship between spatial and mathematical skills? A review of evidence from brain and behavior. Psychonomic Bulletin and Review, 2020, 27, 465-482.	2.8	76
27	Does writing handedness affect neural representation of symbolic number? An fMRI adaptation study. Cortex, 2019, 121, 27-43.	2.4	8
28	Are specific learning disorders truly specific, and are they disorders?. Trends in Neuroscience and Education, 2019, 17, 100115.	3.1	80
29	How Are Symbols and Nonsymbolic Numerical Magnitudes Related? Exploring Bidirectional Relationships in Early Numeracy. Mind, Brain, and Education, 2019, 13, 143-156.	1.9	35
30	Investigating the visual number form area: a replication study. Royal Society Open Science, 2019, 6, 182067.	2.4	3
31	Let's Talk About Maths: The Role of Observed "Mathsâ€Talk―and Maths Provisions in Preschoolers' Numeracy. Mind, Brain, and Education, 2019, 13, 326-340.	1.9	14
32	Development of Number Understanding: Different Theoretical Perspectives. , 2019, , 91-104.		1
33	Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neuroscience and Biobehavioral Reviews, 2019, 103, 316-336.	6.1	131
34	The neural association between arithmetic and basic numerical processing depends on arithmetic problem size and not chronological age. Developmental Cognitive Neuroscience, 2019, 37, 100653.	4.0	11
35	The consistency and cognitive predictors of children's oral language, reading, and math learning profiles. Learning and Individual Differences, 2019, 70, 130-141.	2.7	7
36	The promises of educational neuroscience: examples from literacy and numeracy. Learning: Research and Practice, 2019, 5, 189-200.	0.4	2

#	Article	IF	CITATIONS
37	Developmental specialization of the left intraparietal sulcus for symbolic ordinal processing. Cortex, 2019, 114, 41-53.	2.4	20
38	Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cognitive Psychology, 2019, 109, 68-90.	2.2	100
39	Annual Research Review: Educational neuroscience: progress and prospects. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2019, 60, 477-492.	5.2	124
40	Kindergarten children's symbolic number comparison skills relates to 1st grade mathematics achievement: Evidence from a two-minute paper-and-pencil test. Learning and Instruction, 2019, 59, 21-33.	3.2	30
41	More Similar Than Different: Gender Differences in Children's Basic Numerical Skills Are the Exception Not the Rule. Child Development, 2019, 90, e66-e79.	3.0	51
42	Magnitude processing of written number words is influenced by task, rather than notation. Acta Psychologica, 2018, 191, 160-170.	1.5	2
43	The Psychological Science Accelerator: Advancing Psychology Through a Distributed Collaborative Network. Advances in Methods and Practices in Psychological Science, 2018, 1, 501-515.	9.4	203
44	Understanding the effects of education through the lens of biology. Npj Science of Learning, 2018, 3, 17.	2.8	21
45	Advances in Understanding the Development of the Mathematical Brain. Developmental Cognitive Neuroscience, 2018, 30, 236-238.	4.0	5
46	Symbolic number skills predict growth in nonsymbolic number skills in kindergarteners Developmental Psychology, 2018, 54, 440-457.	1.6	70
47	Contributions of functional Magnetic Resonance Imaging (fMRI) to the study of numerical cognition. Journal of Numerical Cognition, 2018, 4, 505-525.	1.2	9
48	Are numbers grounded in a general magnitude processing system? A functional neuroimaging meta-analysis. Neuropsychologia, 2017, 105, 50-69.	1.6	94
49	Beyond comparison: The influence of physical size on number estimation is modulated by notation, range and spatial arrangement. Acta Psychologica, 2017, 175, 33-41.	1.5	14
50	Nonsymbolic and symbolic magnitude comparison skills as longitudinal predictors of mathematical achievement. Learning and Instruction, 2017, 50, 1-13.	3.2	42
51	How do individual differences in children's domain specific and domain general abilities relate to brain activity within the intraparietal sulcus during arithmetic? An fMRI study. Human Brain Mapping, 2017, 38, 3941-3956.	3.6	11
52	The left intraparietal sulcus adapts to symbolic number in both the visual and auditory modalities: Evidence from fMRI. NeuroImage, 2017, 153, 16-27.	4.2	28
53	What is the precise role of cognitive control in the development of a sense of number?. Behavioral and Brain Sciences, 2017, 40, e179.	0.7	8
54	Accumulation of nonâ€numerical evidence during nonsymbolic number processing in the brain: An fMRI study. Human Brain Mapping, 2017, 38, 4908-4921.	3.6	9

#	Article	IF	CITATIONS
55	Strong causal claims require strong evidence: A commentary on Wang and colleagues. Journal of Experimental Child Psychology, 2017, 153, 163-167.	1.4	54
56	Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis. NeuroImage, 2017, 146, 376-394.	4.2	122
57	Symbolic Numerical Magnitude Processing Is as Important to Arithmetic as Phonological Awareness Is to Reading. PLoS ONE, 2016, 11, e0151045.	2.5	39
58	Symbolic and Nonsymbolic Representation of Number in the Human Parietal Cortex: A Review of the State-of-the-Art, Outstanding Questions and Future Directions. , 2016, , 326-353.		5
59	Probing the nature of deficits in the †Approximate Number System' in children with persistent Developmental Dyscalculia. Developmental Science, 2016, 19, 817-833.	2.4	78
60	Beyond magnitude: Judging ordinality of symbolic number is unrelated to magnitude comparison and independently relates to individual differences in arithmetic. Cognition, 2016, 150, 68-76.	2.2	69
61	Number Symbols in the Brain. , 2016, , 27-50.		11
62	The neural roots of mathematical expertise. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4887-4889.	7.1	10
63	Cognitive neuroscience and mathematics learning: how far have we come? Where do we need to go?. ZDM - International Journal on Mathematics Education, 2016, 48, 379-383.	2.2	20
64	Why numerical symbols count in the development of mathematical skills: evidence from brain and behavior. Current Opinion in Behavioral Sciences, 2016, 10, 14-20.	3.9	109
65	The principles and practices of educational neuroscience: Comment on Bowers (2016) Psychological Review, 2016, 123, 620-627.	3.8	110
66	The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions Canadian Journal of Experimental Psychology, 2016, 70, 12-23.	0.8	136
67	On the ordinality of numbers. Progress in Brain Research, 2016, 227, 187-221.	1.4	53
68	Asymmetric Processing of Numerical and Nonnumerical Magnitudes in the Brain: An fMRI Study. Journal of Cognitive Neuroscience, 2016, 28, 166-176.	2.3	54
69	Trajectories of Symbolic and Nonsymbolic Magnitude Processing in the First Year of Formal Schooling. PLoS ONE, 2016, 11, e0149863.	2.5	49
70	Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2016, 2, 20-41.	1.2	38
71	Rethinking the implications of numerical ratio effects for understanding the development of representational precision and numerical processing across formats Journal of Experimental Psychology: General, 2015, 144, 1021-1035.	2.1	68
72	Qualitatively different coding of symbolic and nonsymbolic numbers in the human brain. Human Brain Mapping, 2015, 36, 475-488.	3.6	107

#	Article	IF	CITATIONS
73	Numerical Order Processing in Children: From Reversing the Distanceâ€Effect to Predicting Arithmetic. Mind, Brain, and Education, 2015, 9, 207-221.	1.9	57
74	Developmental specialization of the left parietal cortex for the semantic representation of Arabic numerals: An fMR-adaptation study. Developmental Cognitive Neuroscience, 2015, 12, 61-73.	4.0	67
75	Drawing connections between white matter and numerical and mathematical cognition: A literature review. Neuroscience and Biobehavioral Reviews, 2015, 48, 35-52.	6.1	76
76	Foundations of Children's Numerical and Mathematical Skills. Advances in Child Development and Behavior, 2015, 48, 93-116.	1.3	26
77	Differential processing of symbolic numerical magnitude and order in first-grade children. Journal of Experimental Child Psychology, 2015, 129, 26-39.	1.4	51
78	Mind, Brain, and Education: A Discussion of Practical, Conceptual, and Ethical Issues. , 2015, , 1703-1719.		10
79	When Your Brain Cannot Do 2 + 2: A Case of Developmental Dyscalculia. Frontiers for Young Minds, 2014, 2, .	0.8	3
80	Counting on the motor system: Rapid action planning reveals the format- and magnitude-dependent extraction of numerical quantity. Journal of Vision, 2014, 14, 30-30.	0.3	19
81	Numerical predictors of arithmetic success in grades 1–6. Developmental Science, 2014, 17, 714-726.	2.4	285
82	How symbols transform brain function: A review in memory of Leo Blomert. Trends in Neuroscience and Education, 2014, 3, 44-49.	3.1	28
83	Cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities, 2014, 35, 657-670.	2.2	78
84	What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency?. Journal of Experimental Child Psychology, 2014, 117, 12-28.	1.4	102
85	The function of the left angular gyrus in mental arithmetic: Evidence from the associative confusion effect. Human Brain Mapping, 2013, 34, 1013-1024.	3.6	85
86	How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2013, 2, 48-55.	3.1	501
87	Why Mental Arithmetic Counts: Brain Activation during Single Digit Arithmetic Predicts High School Math Scores. Journal of Neuroscience, 2013, 33, 156-163.	3.6	127
88	Overlapping and distinct brain regions involved in estimating the spatial position of numerical and non-numerical magnitudes: An fMRI study. Neuropsychologia, 2013, 51, 979-989.	1.6	44
89	Semantic and Perceptual Processing of Number Symbols: Evidence from a Cross-linguistic fMRI Adaptation Study. Journal of Cognitive Neuroscience, 2013, 25, 388-400.	2.3	67
90	Individual differences in left parietal white matter predict math scores on the Preliminary Scholastic Aptitude Test. NeuroImage, 2013, 66, 604-610.	4.2	56

#	Article	IF	CITATIONS
91	Developmental dyscalculia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 111, 241-244.	1.8	6
92	Cognitive Neuroscience of Numerical Cognition. , 2013, , .		0
93	A Two-Minute Paper-and-Pencil Test of Symbolic and Nonsymbolic Numerical Magnitude Processing Explains Variability in Primary School Children's Arithmetic Competence. PLoS ONE, 2013, 8, e67918.	2.5	126
94	Language, Reading, and Math Learning Profiles in an Epidemiological Sample of School Age Children. PLoS ONE, 2013, 8, e77463.	2.5	49
95	Dyscalculia: Characteristics, Causes, and Treatments. Numeracy, 2013, 6, .	0.2	69
96	Symbolic estrangement: Evidence against a strong association between numerical symbols and the quantities they represent Journal of Experimental Psychology: General, 2012, 141, 635-641.	2.1	139
97	Genetic and environmental vulnerabilities in children with neurodevelopmental disorders. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17261-17265.	7.1	98
98	The role of the left intraparietal sulcus in the relationship between symbolic number processing and children's arithmetic competence. Developmental Cognitive Neuroscience, 2012, 2, 448-457.	4.0	100
99	Introduction to the Special Section on "Numerical and Mathematical Processing― Mind, Brain, and Education, 2012, 6, 117-118.	1.9	1
100	Culture and education: new frontiers in brain plasticity. Trends in Cognitive Sciences, 2012, 16, 93-95.	7.8	55
101	Differences between literates and illiterates on symbolic but not nonsymbolic numerical magnitude processing. Psychonomic Bulletin and Review, 2012, 19, 93-100.	2.8	25
102	Neuroeducation – A Critical Overview of An Emerging Field. Neuroethics, 2012, 5, 105-117.	2.8	137
103	Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 2012, 140, 50-57.	1.5	203
104	Developmental Cognitive Neuroscience and Learning. , 2012, , 961-966.		3
105	Symbol processing in the left angular gyrus: Evidence from passive perception of digits. NeuroImage, 2011, 57, 1205-1211.	4.2	86
106	Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency. NeuroImage, 2011, 57, 771-781.	4.2	167
107	Rapid Communication: The effect of mathematics anxiety on the processing of numerical magnitude. Quarterly Journal of Experimental Psychology, 2011, 64, 10-16.	1.1	168
108	Individual differences in mathematical competence modulate brain responses to arithmetic errors: An fMRI study. Learning and Individual Differences, 2011, 21, 636-643.	2.7	19

#	Article	IF	CITATIONS
109	Cognitive neuroscience meets mathematics education: It takes two to Tango. Educational Research Review, 2011, 6, 232-237.	7.8	26
110	Connecting Education and Cognitive Neuroscience: Where will the journey take us?. Educational Philosophy and Theory, 2011, 43, 37-42.	1.8	88
111	Individual differences in children's mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 2011, 118, 32-44.	2.2	134
112	One to Four, and Nothing More. Psychological Science, 2011, 22, 803-811.	3.3	53
113	Introduction to the Special Issue: Toward a Developmental Cognitive Neuroscience of Numerical and Mathematical Cognition. Developmental Neuropsychology, 2011, 36, 645-650.	1.4	1
114	Challenging the reliability and validity of cognitive measures: The case of the numerical distance effect. Acta Psychologica, 2010, 134, 154-161.	1.5	91
115	Promises and potential pitfalls of a â€~cognitive neuroscience of mathematics learning'. ZDM - International Journal on Mathematics Education, 2010, 42, 655-660.	2.2	12
116	Mathematics anxiety affects counting but not subitizing during visual enumeration. Cognition, 2010, 114, 293-297.	2.2	152
117	How is phonological processing related to individual differences in children's arithmetic skills?. Developmental Science, 2010, 13, 508-520.	2.4	178
118	Developmental Specialization in the Right Intraparietal Sulcus for the Abstract Representation of Numerical Magnitude. Journal of Cognitive Neuroscience, 2010, 22, 2627-2637.	2.3	93
119	Linking brain-wide multivoxel activation patterns to behaviour: Examples from language and math. Neurolmage, 2010, 51, 462-471.	4.2	27
120	Structure-function relationships underlying calculation: A combined diffusion tensor imaging and fMRI study. NeuroImage, 2010, 52, 358-363.	4.2	40
121	The development of metaphorical language comprehension in typical development and in Williams syndrome. Journal of Experimental Child Psychology, 2010, 106, 99-114.	1.4	27
122	Neurocognitive approaches to developmental disorders of numerical and mathematical cognition: The perils of neglecting the role of development. Learning and Individual Differences, 2010, 20, 123-129.	2.7	67
123	Cognitive neuroscience meets mathematics education. Educational Research Review, 2010, 5, 97-105.	7.8	37
124	Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude: An fMRI study. NeuroImage, 2010, 49, 1006-1017.	4.2	172
125	Expertise-related deactivation of the right temporoparietal junction during musical improvisation. NeuroImage, 2010, 49, 712-719.	4.2	143
126	Typical and Atypical Development of Basic Numerical Magnitude Representations: A Review of Behavioral and Neuroimaging Studies. , 2010, , 105-127.		3

8

#	Article	IF	CITATIONS
127	Are non-abstract brain representations of number developmentally plausible?. Behavioral and Brain Sciences, 2009, 32, 329-330.	0.7	5
128	The Cerebral Basis of Mapping Nonsymbolic Numerical Quantities onto Abstract Symbols: An fMRI Training Study. Journal of Cognitive Neuroscience, 2009, 21, 1720-1735.	2.3	76
129	To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 2009, 47, 604-608.	1.6	319
130	Building Mind, Brain, and Education Connections: The View From the Upper Valley. Mind, Brain, and Education, 2009, 3, 27-33.	1.9	28
131	Thinking about mechanisms is crucial to connecting neuroscience and education. Cortex, 2009, 45, 546-547.	2.4	47
132	Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children's mathematics achievement. Journal of Experimental Child Psychology, 2009, 103, 17-29.	1.4	565
133	Age-related changes in brain activation associated with dimensional shifts of attention: An fMRI study. NeuroImage, 2009, 46, 249-256.	4.2	95
134	Mapping arithmetic problem solving strategies in the brain: The role of the left angular gyrus in arithmetic fact retrieval. NeuroImage, 2009, 47, S111.	4.2	2
135	Using Developmental Trajectories to Understand Developmental Disorders. Journal of Speech, Language, and Hearing Research, 2009, 52, 336-358.	1.6	377
136	Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 2008, 9, 278-291.	10.2	592
137	Small and large number processing in infants and toddlers with Williams syndrome. Developmental Science, 2008, 11, 637-643.	2.4	87
138	Domainâ€specific and domainâ€general changes in children's development of number comparison. Developmental Science, 2008, 11, 644-649.	2.4	158
139	Generation of novel motor sequences: The neural correlates of musical improvisation. NeuroImage, 2008, 41, 535-543.	4.2	163
140	The Evolution of Numerical Cognition: From Number Neurons to Linguistic Quantifiers. Journal of Neuroscience, 2008, 28, 11819-11824.	3.6	28
141	White matter microstructures underlying mathematical abilities in children. NeuroReport, 2008, 19, 1117-1121.	1.2	79
142	Toward a Developmental Cognitive Neuroscience Approach to the Study of Typical and Atypical Number Development. , 2008, , 13-43.		2
143	Does the Parietal Cortex Distinguish between "10,―"Ten,―and Ten Dots?. Neuron, 2007, 53, 165-167.	8.1	101
144	Individual differences in mathematical competence predict parietal brain activation during mental calculation. NeuroImage, 2007, 38, 346-356.	4.2	259

#	Article	IF	CITATIONS
145	Typical and Atypical Development of Visual Estimation Abilities. Cortex, 2007, 43, 758-768.	2.4	48
146	Linking Visual Attention and Number Processing in the Brain: The Role of the Temporo-parietal Junction in Small and Large Symbolic and Nonsymbolic Number Comparison. Journal of Cognitive Neuroscience, 2007, 19, 1845-1853.	2.3	132
147	Can developmental disorders provide evidence for two systems of number computation in humans?. , 2007, , .		1
148	Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 2007, 17, R1042-R1043.	3.9	365
149	Dissociating response conflict from numerical magnitude processing in the brain: An event-related fMRI study. NeuroImage, 2006, 32, 799-805.	4.2	93
150	Bridges over troubled waters: education and cognitive neuroscience. Trends in Cognitive Sciences, 2006, 10, 146-151.	7.8	228
151	Parametric effects of numerical distance on the intraparietal sulcus during passive viewing of rapid numerosity changes. Brain Research, 2006, 1067, 181-188.	2.2	150
152	Speeded naming, frequency and the development of the lexicon in Williams syndrome. Language and Cognitive Processes, 2006, 21, 721-759.	2.2	38
153	Age-related Changes in the Activation of the Intraparietal Sulcus during Nonsymbolic Magnitude Processing: An Event-related Functional Magnetic Resonance Imaging Study. Journal of Cognitive Neuroscience, 2006, 18, 1820-1828.	2.3	306
154	Effect of Language Switching on Arithmetic: A Bilingual fMRI Study. Journal of Cognitive Neuroscience, 2006, 18, 64-74.	2.3	68
155	Neural correlates of symbolic number processing in children and adults. NeuroReport, 2005, 16, 1769-1773.	1.2	298
156	Time to use neuroscience findings in teacher training. Nature, 2005, 437, 26-26.	27.8	10
157	Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia, 2005, 43, 744-753.	1.6	185
158	What makes counting count? Verbal and visuo-spatial contributions to typical and atypical number development. Journal of Experimental Child Psychology, 2003, 85, 50-62.	1.4	182
159	Double Dissociations in Developmental Disorders? Theoretically Misconceived, Empirically Dubious. Cortex, 2003, 39, 161-163.	2.4	152
160	Atypical trajectories of number development: a neuroconstructivist perspective. Trends in Cognitive Sciences, 2002, 6, 511-516.	7.8	190
161	Atypical development of language and social communication in toddlers with Williams syndrome. Developmental Science, 2002, 5, 233-246.	2.4	253