Kwangsik Nho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6044048/publications.pdf

Version: 2024-02-01

232 papers 9,851 citations

43 h-index 43889 91 g-index

279 all docs

279 docs citations

times ranked

279

13812 citing authors

#	Article	IF	CITATIONS
1	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	27.8	772
2	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 2014, 8, 153-182.	2.1	696
3	Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 2012, 44, 552-561.	21.4	594
4	Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Frontiers in Aging Neuroscience, 2019, 11, 220.	3.4	406
5	Altered bile acid profile associates with cognitive impairment in Alzheimer's disease—An emerging role for gut microbiome. Alzheimer's and Dementia, 2019, 15, 76-92.	0.8	396
6	Alzheimer's Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimer's and Dementia, 2010, 6, 265-273.	0.8	378
7	Metabolic network failures in Alzheimer's disease: A biochemical roadÂmap. Alzheimer's and Dementia, 2017, 13, 965-984.	0.8	362
8	Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. NeuroImage, 2010, 53, 1051-1063.	4.2	340
9	Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Medicine, 2018, 15, e1002482.	8.4	336
10	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	12.8	250
11	Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimer's and Dementia, 2015, 11, 792-814.	0.8	241
12	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	14.8	213
13	Altered bile acid profile in mild cognitive impairment and Alzheimer's disease: Relationship to neuroimaging and CSF biomarkers. Alzheimer's and Dementia, 2019, 15, 232-244.	0.8	198
14	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	21.4	192
15	Whole exome sequencing study identifies novel rare and common Alzheimer's-Associated variants involved in immune response and transcriptional regulation. Molecular Psychiatry, 2020, 25, 1859-1875.	7.9	191
16	Predicting Alzheimer's disease progression using multi-modal deep learning approach. Scientific Reports, 2019, 9, 1952.	3.3	178
17	Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers. Brain Imaging and Behavior, 2014, 8, 183-207.	2.1	161
18	<i>APOE</i> effect on Alzheimer's disease biomarkers in older adults with significant memory concern. Alzheimer's and Dementia, 2015, 11, 1417-1429.	0.8	157

#	Article	IF	CITATIONS
19	Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease. JAMA Neurology, 2021, 78, 396.	9.0	146
20	Association of Altered Liver Enzymes With Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebrospinal Fluid Biomarkers. JAMA Network Open, 2019, 2, e197978.	5.9	142
21	Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 93-112.	1.7	130
22	The role of apolipoprotein E (APOE) genotype in early mild cognitive impairment (E-MCI). Frontiers in Aging Neuroscience, 2013, 5, 11.	3.4	126
23	Neuropathological correlates and genetic architecture of microglial activation in elderly human brain. Nature Communications, 2019, 10, 409.	12.8	121
24	GWAS of longitudinal amyloid accumulation on ¹⁸ F-florbetapir PET in Alzheimer's disease implicates microglial activation gene <i>IL1RAP</i> Brain, 2015, 138, 3076-3088.	7.6	117
25	Nematic Phase of the Two-Dimensional Electron Gas in a Magnetic Field. Physical Review Letters, 2000, 84, 1982-1985.	7.8	116
26	Sex and APOE Îμ4 genotype modify the Alzheimer's disease serum metabolome. Nature Communications, 2020, 11, 1148.	12.8	115
27	Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer's Disease. Cell Reports Medicine, 2020, 1, 100138.	6.5	102
28	Associations of the Top 20 Alzheimer Disease Risk Variants With Brain Amyloidosis. JAMA Neurology, 2018, 75, 328.	9.0	101
29	Genetic variants and functional pathways associated with resilience to Alzheimer's disease. Brain, 2020, 143, 2561-2575.	7.6	93
30	Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer's disease. Nature Communications, 2020, 11, 5698.	12.8	76
31	Targeted neurogenesis pathway-based gene analysis identifies ADORA2A associated with hippocampal volume in mild cognitive impairment and Alzheimer's disease. Neurobiology of Aging, 2017, 60, 92-103.	3.1	70
32	Voxel and surface-based topography of memory and executive deficits in mild cognitive impairment and Alzheimer's disease. Brain Imaging and Behavior, 2012, 6, 551-567.	2.1	66
33	Serum triglycerides in Alzheimer disease. Neurology, 2020, 94, e2088-e2098.	1.1	63
34	β-amyloid and tau drive early Alzheimer's disease decline while glucose hypometabolism drives late decline. Communications Biology, 2020, 3, 352.	4.4	63
35	INPP5D expression is associated with risk for Alzheimer's disease and induced by plaque-associated microglia. Neurobiology of Disease, 2021, 153, 105303.	4.4	63
36	MicroRNA-298 reduces levels of human amyloid-β precursor protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Molecular Psychiatry, 2021, 26, 5636-5657.	7.9	61

3

#	Article	IF	CITATIONS
37	Genome-wide pathway analysis of memory impairment in the Alzheimerâ \in ^M s Disease Neuroimaging Initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks. Brain Imaging and Behavior, 2012, 6, 634-648.	2.1	58
38	Harnessing peripheral DNA methylation differences in the Alzheimer's Disease Neuroimaging Initiative (ADNI) to reveal novel biomarkers of disease. Clinical Epigenetics, 2020, 12, 84.	4.1	57
39	Integrative metabolomicsâ€genomics approach reveals key metabolic pathways and regulators of Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 1260-1278.	0.8	57
40	Influence of <i>TSPO</i> Genotype on ^{11} C-PBR28 Standardized Uptake Values. Journal of Nuclear Medicine, 2013, 54, 1320-1322.	5.0	56
41	Plasma Tau Association with Brain Atrophy in Mild Cognitive Impairment and Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 58, 1245-1254.	2.6	54
42	Progress in Polygenic Composite Scores in Alzheimer's and Other Complex Diseases. Trends in Genetics, 2019, 35, 371-382.	6.7	52
43	Influence of Genetic Variation on Plasma Protein Levels in Older Adults Using a Multi-Analyte Panel. PLoS ONE, 2013, 8, e70269.	2.5	50
44	Protective variant for hippocampal atrophy identified by whole exome sequencing. Annals of Neurology, 2015, 77, 547-552.	5.3	48
45	Relationship between baseline brain metabolism measured using [18F]FDG PET and memory and executive function in prodromal and early Alzheimer's disease. Brain Imaging and Behavior, 2012, 6, 568-583.	2.1	47
46	Amyloid pathway-based candidate gene analysis of [11C]PiB-PET in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Brain Imaging and Behavior, 2012, 6, 1-15.	2.1	47
47	Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Molecular Psychiatry, 2021, 26, 309-321.	7.9	47
48	A Longitudinal Imaging Genetics Study of Neuroanatomical Asymmetry in Alzheimer's Disease. Biological Psychiatry, 2018, 84, 522-530.	1.3	46
49	Sets of coregulated serum lipids are associated with Alzheimer's disease pathophysiology. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 619-627.	2.4	45
50	Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm. Neurobiology of Aging, 2015, 36, S185-S193.	3.1	43
51	APOE Promoter Polymorphism-219T/G is an Effect Modifier of the Influence of APOE Îμ4 on Alzheimer's Disease Risk in a Multiracial Sample. Journal of Clinical Medicine, 2019, 8, 1236.	2.4	40
52	Bile acid synthesis, modulation, and dementia: A metabolomic, transcriptomic, and pharmacoepidemiologic study. PLoS Medicine, 2021, 18, e1003615.	8.4	38
53	Deep learning detection of informative features in tau PET for Alzheimer's disease classification. BMC Bioinformatics, 2020, 21, 496.	2.6	37
54	The effect of the top 20 Alzheimer disease risk genes on grayâ€matter density and FDG PET brain metabolism. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2016, 5, 53-66.	2.4	35

#	Article	IF	CITATIONS
55	MildInt: Deep Learning-Based Multimodal Longitudinal Data Integration Framework. Frontiers in Genetics, 2019, 10, 617.	2.3	35
56	PLCG2 is associated with the inflammatory response and is induced by amyloid plaques in Alzheimer's disease. Genome Medicine, 2022, 14, 17.	8.2	34
57	Gene-based GWAS and biological pathway analysis of the resilience of executive functioning. Brain Imaging and Behavior, 2014, 8, 110-118.	2.1	33
58	Comprehensive Gene- and Pathway-Based Analysis of Depressive Symptoms in Older Adults. Journal of Alzheimer's Disease, 2015, 45, 1197-1206.	2.6	33
59	The Interleukin 3 Gene (IL3) Contributes to Human Brain Volume Variation by Regulating Proliferation and Survival of Neural Progenitors. PLoS ONE, 2012, 7, e50375.	2.5	33
60	Late-Onset Alzheimer's Disease, Heating up and Foxed by Several Proteins: Pathomolecular Effects of the Aging Process. Journal of Alzheimer's Disease, 2014, 40, 1-17.	2.6	30
61	Targeted genetic analysis of cerebral blood flow imaging phenotypes implicates the INPP5D gene. Neurobiology of Aging, 2019, 81, 213-221.	3.1	30
62	Association of peripheral blood DNA methylation level with Alzheimer's disease progression. Clinical Epigenetics, 2021, 13, 191.	4.1	29
63	Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging. Acta Neuropathologica, 2016, 132, 841-858.	7.7	28
64	Association analysis of rare variants near the APOE region with CSF and neuroimaging biomarkers of Alzheimer's disease. BMC Medical Genomics, 2017, 10, 29.	1.5	28
65	Dysregulated Fc gamma receptor–mediated phagocytosis pathway in Alzheimer's disease: network-based gene expression analysis. Neurobiology of Aging, 2020, 88, 24-32.	3.1	28
66	Human microRNA (miR-20b-5p) modulates Alzheimer's disease pathways and neuronal function, and a specific polymorphism close to the MIR20B gene influences Alzheimer's biomarkers. Molecular Psychiatry, 2022, 27, 1256-1273.	7.9	26
67	Deep learning-based identification of genetic variants: application to Alzheimer's disease classification. Briefings in Bioinformatics, 2022, 23, .	6.5	26
68	Sex differences in the genetic architecture of cognitive resilience to Alzheimer's disease. Brain, 2022, 145, 2541-2554.	7.6	26
69	Hippocampal transcriptome-guided genetic analysis of correlated episodic memory phenotypes in Alzheimer's disease. Frontiers in Genetics, 2015, 6, 117.	2.3	23
70	Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease â€~Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe. Journal of Alzheimer's Disease, 2016, 52, 373-383.	2.6	23
71	Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules. Bioinformatics, 2017, 33, 3250-3257.	4.1	23
72	Genomeâ€wide transcriptome analysis identifies novel dysregulated genes implicated in Alzheimer's pathology. Alzheimer's and Dementia, 2020, 16, 1213-1223.	0.8	23

#	Article	IF	CITATIONS
73	Genetic architecture of resilience of executive functioning. Brain Imaging and Behavior, 2012, 6, 621-633.	2.1	22
74	Genome-wide association analysis of hippocampal volume identifies enrichment of neurogenesis-related pathways. Scientific Reports, 2019, 9, 14498.	3.3	22
75	Serum metabolites associated with brain amyloid beta deposition, cognition and dementia progression. Brain Communications, 2021, 3, fcab139.	3.3	21
76	Integration of bioinformatics and imaging informatics for identifying rare PSEN1 variants in Alzheimer's disease. BMC Medical Genomics, 2016, 9, 30.	1.5	20
77	Genome-wide association study of language performance in Alzheimer's disease. Brain and Language, 2017, 172, 22-29.	1.6	20
78	Tauâ€Atrophy Variability Reveals Phenotypic Heterogeneity in Alzheimer's Disease. Annals of Neurology, 2021, 90, 751-762.	5.3	19
79	Comparing Variability, Severity, and Persistence of Depressive Symptoms as Predictors of Future Stroke Risk. American Journal of Geriatric Psychiatry, 2017, 25, 120-128.	1.2	17
80	Exome Chip Analysis Identifies Low-Frequency and Rare Variants in <i>MRPL38</i> for White Matter Hyperintensities on Brain Magnetic Resonance Imaging. Stroke, 2018, 49, 1812-1819.	2.0	17
81	Identification of exon skipping events associated with Alzheimer's disease in the human hippocampus. BMC Medical Genomics, 2019, 12, 13.	1.5	17
82	Knowledge-driven binning approach for rare variant association analysis: application to neuroimaging biomarkers in Alzheimer's disease. BMC Medical Informatics and Decision Making, 2017, 17, 61.	3.0	16
83	<i>APOE</i> ε2 resilience for Alzheimer's disease is mediated by plasma lipid species: Analysis of three independent cohort studies. Alzheimer's and Dementia, 2022, 18, 2151-2166.	0.8	16
84	Superfluidity of Mesoscopic Bose Gases under Varying Confinements. Physical Review Letters, 2005, 95, 193601.	7.8	15
85	Bile acids targeted metabolomics and medication classification data in the ADNI1 and ADNIGO/2 cohorts. Scientific Data, 2019, 6, 212.	5.3	15
86	Circulating ethanolamine plasmalogen indices in Alzheimer's disease: Relation to diagnosis, cognition, and CSF tau. Alzheimer's and Dementia, 2020, 16, 1234-1247.	0.8	15
87	Telomere Shortening in the Alzheimer's Disease Neuroimaging Initiative Cohort. Journal of Alzheimer's Disease, 2019, 71, 33-43.	2.6	14
88	Two-dimensional enrichment analysis for mining high-level imaging genetic associations. Brain Informatics, 2017, 4, 27-37.	3.0	13
89	Association of blood-based transcriptional risk scores with biomarkers for Alzheimer disease. Neurology: Genetics, 2020, 6, e517.	1.9	13
90	Dysregulated expression levels of APH1B in peripheral blood are associated with brain atrophy and amyloid-β deposition in Alzheimer's disease. Alzheimer's Research and Therapy, 2021, 13, 183.	6.2	13

#	Article	IF	Citations
91	Genetic Influences on Plasma Homocysteine Levels in African Americans and Yoruba Nigerians. Journal of Alzheimer's Disease, 2016, 49, 991-1003.	2.6	12
92	Rare variants in the splicing regulatory elements of EXOC3L4 are associated with brain glucose metabolism in Alzheimer's disease. BMC Medical Genomics, 2018, 11, 76.	1.5	12
93	Systems modeling of white matter microstructural abnormalities in Alzheimer's disease. Neurolmage: Clinical, 2020, 26, 102203.	2.7	12
94	Comparison of multi-sample variant calling methods for whole genome sequencing., 2014, 2014, 59-62.		11
95	Quantitative trait loci identification for brain endophenotypes via new additive model with random networks. Bioinformatics, 2018, 34, i866-i874.	4.1	11
96	Genome-wide association study identifies susceptibility loci of brain atrophy to NFIA and ST18 in Alzheimer's disease. Neurobiology of Aging, 2021, 102, 200.e1-200.e11.	3.1	11
97	Predictability of polygenic risk score for progression to dementia and its interaction with APOE $\hat{l}\mu4$ in mild cognitive impairment. Translational Neurodegeneration, 2021, 10, 32.	8.0	11
98	Alternative Splicing Regulation of an Alzheimer's Risk Variant in CLU. International Journal of Molecular Sciences, 2020, 21, 7079.	4.1	10
99	Identification of Novel Genes Associated with Cortical Thickness in Alzheimer's Disease: Systems Biology Approach to Neuroimaging Endophenotype. Journal of Alzheimer's Disease, 2020, 75, 531-545.	2.6	10
100	Alternative Splicing Regulation of Low-Frequency Genetic Variants in Exon 2 of TREM2 in Alzheimer's Disease by Splicing-Based Aggregation. International Journal of Molecular Sciences, 2021, 22, 9865.	4.1	10
101	A missense variant in SHARPIN mediates Alzheimer's disease-specific brain damages. Translational Psychiatry, 2021, 11, 590.	4.8	10
102	Critical behavior of the planar magnet model in three dimensions. Physical Review B, 1999, 59, 11575-11578.	3.2	9
103	Alzheimer's disease genetic risk variants beyond APOE $\hat{l}\mu4$ predict mortality. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2017, 8, 188-195.	2.4	8
104	Initiation of antidepressant medication and risk of incident stroke: using the Adult Changes in Thought cohort to address time-varying confounding. Annals of Epidemiology, 2019, 35, 42-47.e1.	1.9	8
105	Integrative-omics for discovery of network-level disease biomarkers: a case study in Alzheimer's disease. Briefings in Bioinformatics, 2021, 22, .	6.5	8
106	Rare CASP6N73T variant associated with hippocampal volume exhibits decreased proteolytic activity, synaptic transmission defect, and neurodegeneration. Scientific Reports, 2021, 11, 12695.	3.3	8
107	PARP1 Gene Variation and Microglial Activity on [11C]PBR28 PET in Older Adults at Risk for Alzheimer's Disease. Lecture Notes in Computer Science, 2013, 8159, 150-158.	1.3	8
108	Longitudinal Genotype-Phenotype Association Study via Temporal Structure Auto-learning Predictive Model. Lecture Notes in Computer Science, 2017, 10229, 287-302.	1,3	8

#	Article	IF	CITATIONS
109	Volumetric GWAS of medial temporal lobe structures identifies an ERC1 locus using ADNI high-resolution T2-weighted MRI data. Neurobiology of Aging, 2020, 95, 81-93.	3.1	7
110	OUP accepted manuscript. Brain, 2021, , .	7.6	7
111	Brain-wide structural connectivity alterations under the control of Alzheimer risk genes. International Journal of Computational Biology and Drug Design, 2020, 13, 58.	0.3	7
112	Implications of Liver Enzymes in the Pathogenesis of Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 88, 1371-1376.	2.6	7
113	Codon bias among synonymous rare variants is associated with Alzheimer's disease imaging biomarker. , 2018, , .		6
114	Longitudinal Genotype–Phenotype Association Study through Temporal Structure Auto-Learning Predictive Model. Journal of Computational Biology, 2018, 25, 809-824.	1.6	6
115	Identification of functionally connected multi-omic biomarkers for Alzheimer's disease using modularity-constrained Lasso. PLoS ONE, 2020, 15, e0234748.	2.5	6
116	Importance of GWAS in finding un-targeted genetic association of sporadic Alzheimer's disease. Molecular and Cellular Toxicology, 2021, 17, 233.	1.7	6
117	Codon bias among synonymous rare variants is associated with Alzheimer's disease imaging biomarker. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2018, 23, 365-376.	0.7	6
118	Genetic variation affecting exon skipping contributes to brain structural atrophy in Alzheimer's disease. AMIA Summits on Translational Science Proceedings, 2018, 2017, 124-131.	0.4	6
119	ADAS-viewer: web-based application for integrative analysis of multi-omics data in Alzheimer's disease. Npj Systems Biology and Applications, 2021, 7, 18.	3.0	5
120	Transcriptome-Guided Imaging Genetic Analysis via a Novel Sparse CCA Algorithm. Lecture Notes in Computer Science, 2017, 10551, 220-229.	1.3	5
121	BMI1 is associated with CSF amyloid-β and rates of cognitive decline in Alzheimer's disease. Alzheimer's Research and Therapy, 2021, 13, 164.	6.2	5
122	Differential co-expression analysis reveals early stage transcriptomic decoupling in alzheimer's disease. BMC Medical Genomics, 2020, 13, 53.	1.5	4
123	P4-008: Mapre2 as a novel Alzheimer's disease target gene from gwas of CSF amyloid beta 1-42, tau and hyperphosphorylated tau in the ADNI cohort. , 2015, 11, P767-P768.		3
124	Alpha-synuclein (SNCA) polymorphisms exert protective effects on memory after mild traumatic brain injury. Neuroscience Letters, 2016, 630, 241-246.	2.1	3
125	[P1–142]: DNA METHYLATION DYNAMICS IN ALZHEIMER's DISEASE DIAGNOSIS AND PROGRESSION. Alzheimer's and Dementia, 2017, 13, P297.	0.8	3
126	ICâ€Pâ€063: A TOPOGRAPHIC IMAGING BIOMARKER OF TDP43 PATHOLOGY IN AMNESTIC DEMENTIA BASED ON AUTOPSYâ€DERIVED FDGâ€PET PATTERNS. Alzheimer's and Dementia, 2019, 15, P61.	0.8	3

#	Article	IF	CITATIONS
127	Shared Genetic Background Between Cerebrospinal Fluid Biomarkers and Risk for Alzheimer's Disease: A Two-Sample Mendelian Randomization Study. Journal of Alzheimer's Disease, 2021, 80, 1197-1207.	2.6	3
128	Reply. Annals of Neurology, 2015, 78, 662-663.	5.3	2
129	Reply. Annals of Neurology, 2015, 78, 499-500.	5.3	2
130	P2â€098: Whole Brain Surfaceâ€Based Analysis Identified Brain Atrophy Associated with SNPS in <i>FRMD6</i> Linked to Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P648.	0.8	2
131	[P3–088]: <i>KLK8</i> AS A MODULATOR OF ALZHEIMER's DISEASE PATHOLOGY: NEUROIMAGING GENETICS. Alzheimer's and Dementia, 2017, 13, P966.	0.8	2
132	Transcriptomic profiles underlying functional brain networks at different stages of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e046163.	0.8	2
133	Associations between Cortical Thickness and Metamemory in Alzheimer's Disease. Brain Imaging and Behavior, 2022, , 1.	2.1	2
134	Genome-wide association study of brain arteriolosclerosis. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1437-1450.	4.3	2
135	Impact of <i>PLCG2</i> expression on Microglial Biology and Disease Pathogenesis in Alzheimer's Disease. Alzheimer's and Dementia, 2021, 17, e058740.	0.8	2
136	Integrative analysis of eQTL and GWAS summary statistics reveals transcriptomic alteration in Alzheimer brains. BMC Medical Genomics, 2022, 15, 93.	1.5	2
137	Integrative Co-methylation Network Analysis Identifies Novel DNA Methylation Signatures and Their Target Genes in Alzheimer's Disease. Biological Psychiatry, 2023, 93, 842-851.	1.3	2
138	O3-03-01: Genome-wide association study of CSF biomarkers amyloid beta 1-42, tau and tau phosphorylated at threonine 181 in the ADNI cohort., 2010, 6, S129-S129.		1
139	O3-06-01: Association analysis of candidate SNPs on hippocampal volume and shape in mild cognitive impairment and older adults with cognitive complaints. , 2010, 6, S137-S138.		1
140	IC-P-042: Influence of rare reelin variants on quantitative PET imaging and CSF phenotypes in late-onset Alzheimer's disease., 2015, 11, P36-P36.		1
141	P1-201: Genetic findings using ADNI multimodal quantitative phenotypes: A 2014 update. , 2015, 11, P426-P426.		1
142	O3-13-04: Genome-wide rare variant analysis identifies candidate genes significantly associated with composite scores for memory., 2015, 11, P251-P252.		1
143	Two-Dimensional Enrichment Analysis for Mining High-Level Imaging Genetic Associations. Lecture Notes in Computer Science, 2015, 9250, 115-124.	1.3	1
144	P2â€074: A Metaâ€Analysis Identifies <i>ADORA2A</i> Associated with Hippocampal Volume in Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P636.	0.8	1

#	Article	IF	CITATIONS
145	O5â€01â€04: EXAMINING THE EFFECT OF THE TOP 20 ALZHEIMER'S DISEASE RISK VARIANTS ON BRAIN AMYLOIDOSIS, STRUCTURAL ATROPHY AND METABOLISM. Alzheimer's and Dementia, 2016, 12, P376.	0.8	1
146	ICâ€Pâ€066: Association of FDGâ€PET Brain Metabolism with Alzheimer's Disease Risk Genes. Alzheimer's and Dementia, 2016, 12, P52.	0.8	1
147	[ICâ€Pâ€063]: <i>KLK8</i> AS A MODULATOR OF ALZHEIMER's DISEASE PATHOLOGY: NEUROIMAGING GENETICS Alzheimer's and Dementia, 2017, 13, P51.	S _{0.8}	1
148	Genetic risk prediction of lateâ€onset Alzheimer's disease based on tissueâ€specific transcriptomic analysis and polygenic risk scores. Alzheimer's and Dementia, 2020, 16, e045184.	0.8	1
149	Genomeâ€wide study of the human lipidome and links to Alzheimer's disease risk. Alzheimer's and Dementia, 2020, 16, e045600.	0.8	1
150	Integrative metabolomicsâ€genomics approach reveals that pathways related to the metabolism of acylcarnitines and amines are new potential targets of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e045610.	0.8	1
151	Association of peripheral blood DNA methylation levels with Alzheimer's disease progression. Alzheimer's and Dementia, 2021, 17, .	0.8	1
152	Transcriptomics, metabolomics, lipidomics, metabolic flux and mGWAS analyses of sphingolipid pathway highlights novel drugs for Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.8	1
153	INPP5D as a potential therapeutic target against Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e053236.	0.8	1
154	Investigating the importance of acylcarnitines in Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e056647.	0.8	1
155	IC-O1-03: Hippocampal transcriptome-guided gene-gene interaction of memory phenotype in MCI and Alzheimer's disease., 2013, 9, P4-P4.		0
156	P3-024: NEXT-GENERATION SEQUENCING OF THE BCHE LOCUS IDENTIFIES A FUNCTIONAL SNP ASSOCIATED WITH ALZHEIMER'S DISEASE BIOMARKERS AND AGE OF ONSET. , 2014, 10, P636-P636.		0
157	P2-132: Association of cerebral microhemorrhages with amyloid deposition and hyperlipidemia., 2015, 11, P534-P535.		0
158	P3-014: Influence of rare RELN variants on quantitative PET imaging and CSF phenotypes in late-onset Alzheimer's disease., 2015, 11, P624-P625.		0
159	P4-191: Gwas identifies gli3 as a novel gene for language deficits and cortical changes in older adults at-risk for Alzheimer's disease., 2015, 11, P853-P853.		0
160	P1-193: Anticholinergic medication use in older adults is associated with memory and hippocampal volume. , 2015, 11, P422-P422.		0
161	IC-P-035: Effect of hypertension and antihypertensive medication on executive function, brain atrophy, and white matter hyperintensities. , 2015, 11 , P32-P33.		O
162	IC-P-034: Anticholinergic medication use in older adults is associated with memory and hippocampal volume., 2015, 11, P32-P32.		0

#	Article	IF	Citations
163	P4-197: Gene expression profiling identifies altered networks in late-onset Alzheimer's disease: Immune response and mitochondrial process. , 2015, 11, P855-P856.		0
164	O4-05-01: Gwas of longitudinal amyloid PET identifies IL1RAP as a new potential Alzheimer's disease target., 2015, 11, P277-P278.		0
165	Reply. Annals of Neurology, 2015, 78, 836-837.	5.3	O
166	IC-P-037: Association of cerebral microhemorrhages with amyloid deposition and hyperlipidemia. , 2015, 11, P33-P34.		0
167	O1-04-04: Effect of hypertension and antihypertensive medication on executive function, brain atrophy, and white matter hyperintensities., 2015, 11, P133-P134.		O
168	P1-002: Transcriptome-guided neurogenesis gene pathway variation is associated with hippocampal volume in mild cognitive impairment and Alzheimer's disease., 2015, 11, P336-P337.		0
169	P1-009: The nav2 (neuron navigator 2) gene as a common genetic influence across correlated episodic memory performances., 2015, 11, P339-P340.		O
170	P4-195: Pathway-based gene analysis identifies vegfa as a gene associated with cerebral blood flow in Alzheimer's disease., 2015, 11, P855-P855.		0
171	Reply. Annals of Neurology, 2016, 79, 335-335.	5.3	O
172	O1â€12â€02: Identification of Discriminative Brain Imaging and Genomic Associations: an Alzheimer's Disease Study. Alzheimer's and Dementia, 2016, 12, P205.	0.8	0
173	P1â€007: Association of FDGâ€PET Brain Metabolism with Alzheimer's Disease Risk Genes. Alzheimer's and Dementia, 2016, 12, P399.	0.8	0
174	ICâ€02â€01: The Effects of The Top 20 Alzheimer's Disease Risk Genes on Brain Atrophy. Alzheimer's and Dementia, 2016, 12, P4.	0.8	0
175	ICâ€Pâ€059: Examining The Effect of The Top 20 Ad Risk Variants on Brain Amyloidosis, Structural Atrophy and Metabolism. Alzheimer's and Dementia, 2016, 12, P47.	0.8	O
176	IC-P-061: Alzheimer's Disease Risk Genes Can Predict Brain Amyloidosis. , 2016, 12, P49-P50.		0
177	ICâ€Pâ€070: Predicting Cognitive Decline and Brain Amyloidosis Using Cognitive and Peripheral Blood Gene Expression Measures. Alzheimer's and Dementia, 2016, 12, P55.	0.8	0
178	ICâ€Pâ€072: Gene Expression Of ABCA7 Dysregulated in Peripheral Blood is Associated With Decreased Metabolic Activity in Hippocampus. Alzheimer's and Dementia, 2016, 12, P56.	0.8	0
179	ICâ€Pâ€074: Genomeâ€Wide Metaâ€Analysis of Transcriptome Profiling Identifies Novel Dysregulated Genes Implicated in Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P58.	0.8	0
180	ICâ€Pâ€075: The Growth and Impact of ADNI Genetics Publications as Measured by Science Mapping. Alzheimer's and Dementia, 2016, 12, P60.	0.8	0

#	Article	IF	CITATIONS
181	IC-P-109: Plasma TAU Levels in Mild Cognitive Impairment and Alzheimer's Disease. , 2016, 12, P82-P83.		0
182	P2â€233: Alzheimer's Disease Risk Genes Can Predict Brain Amyloidosis. Alzheimer's and Dementia, 2016, 12, P712.	0.8	0
183	P2â€249: Predicting Cognitive Decline and Brain Amyloidosis using Cognitive and Peripheral Blood Gene Expression Measures. Alzheimer's and Dementia, 2016, 12, P720.	0.8	O
184	P2â€253: The Effects of the Top 20 Alzheimer's Disease Risk Genes on Brain Atrophy. Alzheimer's and Dementia, 2016, 12, P722.	0.8	0
185	P2â€258: The Growth and Impact of ADNI Genetics Publications as Measured by Science Mapping. Alzheimer's and Dementia, 2016, 12, P725.	0.8	O
186	P3â€087: Gene Expression of <i>ABCA7</i> Dysregulated in Peripheral Blood is Associated With Decreased Metabolic Activity in Hippocampus. Alzheimer's and Dementia, 2016, 12, P851.	0.8	0
187	P3-089: Influence of Parkinson's Disease Candidate Genes On Lewy Body Pathology in Autopsy-Confirmed Alzheimer's Disease Cases. , 2016, 12, P854-P854.		O
188	F1-02-02: Genetic Influence on Levels of Targeted Metabolites Associated with Alzheimer's Disease. , 2016, 12, P164-P165.		0
189	O2-06-02: Genome-Wide Meta-Analysis of Transcriptome Profiling Identifies Novel Dysregulated Genes Implicated in Alzheimer's Disease. , 2016, 12, P238-P239.		O
190	O2â€10â€01: Genomeâ€Wide Association Analysis of Hippocampal Volume Identifies Enrichment of Neurogenesisâ€Related Pathways. Alzheimer's and Dementia, 2016, 12, P250.	0.8	0
191	O4â€10â€04: Plasma TAU Levels in Mild Cognitive Impairment and Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P358.	0.8	O
192	P1-117: Blood Gene Expression Changes Implicated in Alzheimer's Disease. , 2016, 12, P448-P448.		0
193	[P3–087]: MICRORNA AND GENE NETWORKS UNDERLYING THE INVERSE ASSOCIATION OF CANCER AND ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P966.	0.8	O
194	[P4–420]: DEVELOPMENT OF A TAU BIOLOGICAL NETWORK FOR GENETIC ANALYSIS OF TAUOPATHIES. Alzheimer's and Dementia, 2017, 13, P1492.	0.8	0
195	[ICâ€Pâ€056]: <i>ADORA2A</i> POLYMORPHISM IS ASSOCIATED WITH CEREBRAL BLOOD FLOW IN MILD COGNITIVE IMPAIRMENT (MCI) AND ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P46.	0.8	O
196	[P1–151]: <i>VEGFA</i> IS ASSOCIATED WITH CEREBRAL BLOOD FLOW AND WHITE MATTER HYPERINTENSITY IN MILD COGNITIVE IMPAIRMENT (MCI) AND ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P300.	0.8	0
197	[P2–111]: <i>ADORA2A</i> POLYMORPHISM IS ASSOCIATED WITH CEREBRAL BLOOD FLOW IN MILD COGNITIVE IMPAIRMENT (MCI) AND ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P649.	0.8	O
198	[P2–220]: GENETIC FINDINGS USING ADNI MULTIMODAL QUANTITATIVE PHENOTYPES: A 2016 UPDATE. Alzheimer's and Dementia, 2017, 13, P694.	0.8	0

#	Article	IF	CITATIONS
199	[F1–02–04]: INTEGRATING MULTIâ€MODALITY IMAGING AND MULTIâ€LAYER â€OMICS TO ADVANCE THE SY BIOLOGY OF ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P175.	STEMS	0
200	[O1–11–02]: GENOMEâ€WIDE ASSOCIATION ANALYSIS OF TAU ACCUMULATION IDENTIFIES ENRICHMENT (NEUROGENESISâ€RELATED PATHWAYS. Alzheimer's and Dementia, 2017, 13, P217.	OF8	0
201	[F2–01–03]: GUT DERIVED BILE ACID METABOLITES CORRELATE WITH STRUCTURAL AND FUNCTIONAL NEUROIMAGING MEASURES IN ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P543.	0.8	0
202	F3â€02â€02: CIRCULATING METABOLITES' ASSOCIATION WITH ALZHEIMER'S DISEASE–ASSOCIATED GENE VARIANTS. Alzheimer's and Dementia, 2018, 14, P997.	TIC 0.8	0
203	P4â€099: MULTIVARIATE CLUSTER PROFILING OF AMYLOID BETA, TAU, NEURODEGENERATION AND VASCULAR (ATNV) BIOMARKERS IN THE ADNI COHORT: IMPLICATIONS FOR COGNITION, –OMICS AND CLINICAL TRIALS. Alzheimer's and Dementia, 2018, 14, P1475.	0.8	0
204	P3â€120: DNA METHYLATION DYNAMICS IN ALZHEIMER'S DISEASE: DEVELOPMENT OF BIOMARKERS AND NOVEL DRUG TARGETS USING ADNI EPIGENETIC DATA. Alzheimer's and Dementia, 2018, 14, P1113.	0.8	0
205	P2â€253: <i>EP300</i> IS ASSOCIATED WITH ALTERED BILE ACIDS IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P772.	0.8	0
206	P2â€003: ACETYLCHOLINESTERASE INHIBITOR THERAPY IN MILD COGNITIVE IMPAIRMENT: YES OR NO?. Alzheimer's and Dementia, 2018, 14, P665.	0.8	0
207	P1â€143: MULTIVARIATE GENOMEâ€WIDE ASSOCIATION STUDY OF CSF BIOMARKERS FOR ALZHEIMER'S DISEAS IDENTIFIES VARIANTS IN HLA CLASS I REGION PROVIDING FURTHER EVIDENCE FOR THE ROLE OF IMMUNE FUNCTION. Alzheimer's and Dementia, 2018, 14, P330.	6E 0.8	O
208	ICâ€Pâ€047: ASSOCIATIONS BETWEEN CORTICAL THICKNESS AND METAMEMORY IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P46.	0.8	0
209	F3â€02â€01: ALTERED BILE ACID METABOLITES IN MILD COGNITIVE IMPAIRMENT AND ALZHEIMER'S DISEASE: RELATION TO NEUROIMAGING AND CSF BIOMARKERS. Alzheimer's and Dementia, 2018, 14, P997.	0.8	0
210	P1â€153: DIACYLGLYCEROL PATHWAYâ€RELATED GENE <i>PNPLA2</i> IS ASSOCIATED WITH CSF BIOMARKERS ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P335.	IN 0.8	0
211	P3â€105: GENETIC VARIATION OF ANTIâ€AGING GENE <i>FGF23</i> IS ASSOCIATED WITH LARGER CORTICAL THICKNESS IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1107.	0.8	0
212	O4â€01â€06: WHOLEâ€EXOME ANALYSIS OF LATEâ€ONSET ALZHEIMER'S DISEASE REVEALS NOVEL CANDIDATE INVOLVED IN COGNITIVE FUNCTION. Alzheimer's and Dementia, 2018, 14, P1402.	GENES	0
213	ICâ€Pâ€072: GENETIC VARIATION OF ANTIâ€AGING GENE FGF23 IS ASSOCIATED WITH LARGER CORTICAL THICKN IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P64.	NESS 0.8	O
214	P2â€103: GENOMEâ€WIDE ASSOCIATION OF TOP ALZHEIMER'S DISEASE ENDOPHENOTYPES IN ADNI DATASET. Alzheimer's and Dementia, 2018, 14, P707.	0.8	0
215	ICâ€Pâ€070: GENOMEâ€WIDE ASSOCIATION OF TOP ALZHEIMER'S DISEASE ENDOPHENOTYPES IN ADNI DATASE Alzheimer's and Dementia, 2018, 14, P62.	T. 0.8	O
216	P4â€489: GENETIC ASSOCIATION OF IMMUNEâ€RELATED PROTEOMIC ANALYTES FROM PERIPHERAL BLOOD IN NAND ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2019, 15, P1499.	VCI 0.8	0

#	Article	IF	Citations
217	ICâ€Pâ€057: DYSREGULATED FC GAMMA Râ€MEDIATED PHAGOCYTOSIS PATHWAY IN ALZHEIMER'S DISEASE: NETWORKâ€BASED GENE EXPRESSION ANALYSIS. Alzheimer's and Dementia, 2019, 15, P57.	0.8	0
218	ICâ€Pâ€060: GLOBAL CORTICAL [F18]FLORTAUCIPIR ASSOCIATION WITH THE TOP 20 ALZHEIMER'S DISEASE RISGENES. Alzheimer's and Dementia, 2019, 15, P59.	6K _{0.8}	0
219	Whole exome sequencing analysis identifies genes and pathways in sporadic earlyâ€onset Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e037899.	0.8	0
220	Deep learning detection of informative features in [18F] flortaucipir PET for Alzheimer's disease classification. Alzheimer's and Dementia, 2020, 16, e041126.	0.8	0
221	Identification of concordant plasma lipid signatures in Alzheimer's disease: Validation between two independent studies of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e042275.	0.8	0
222	A networkâ€based, multiâ€omics atlas for target identification and prioritization in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e045594.	0.8	0
223	Serum metabolome informs neuroimaging biomarkers for Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e045596.	0.8	0
224	Genomeâ€wide analysis of longitudinal Alzheimer's disease biomarker endophenotypes. Alzheimer's and Dementia, 2020, 16, e046295.	0.8	0
225	Endophenotype driven polygenic risk scores for Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e046766.	0.8	0
226	Biomarkerâ€based polygenic risk scores for profiling genetic susceptibility in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.8	0
227	Integrative analysis of eQTL and GWAS summary statistics reveals novel genes related to Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.8	0
228	Lipidomic signatures for APOE genotypes provides new insights about mechanisms of resilience in Alzheimer $\hat{a} \in \mathbb{T}^M$ s disease. Alzheimer's and Dementia, 2021, 17, .	0.8	0
229	Predictability of polygenic risk score for progression to dementia and its interaction with <code><i>APOE</i></code> $\hat{l}\mu4$ in mild cognitive impairment. Alzheimer's and Dementia, 2021, 17, .	0.8	0
230	Novel polygenic risk score approach with transcriptome-based weighting for genetic risk prediction of late-onset Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e053960.	0.8	0
231	PLCG2 expression is associated with plaque-associated microglia in Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e054755.	0.8	0
232	Sex differences in the genetic architecture underlying resilience in AD Alzheimer's and Dementia, 2021, 17 Suppl 3, e055010.	0.8	0