
George R Beck Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6043604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulating phosphate consumption, a novel therapeutic approach for the control of cancer cell proliferation and tumorigenesis. Biochemical Pharmacology, 2021, 183, 114305.	4.4	9

 $_{2}$ Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock 10 $_{9.1}^{1}$ 50 702 $_{1,430}^{1}$ (edition

3	Effects of phosphorus and calcium to phosphorus consumption ratio on mineral metabolism and cardiometabolic health. Journal of Nutritional Biochemistry, 2020, 80, 108374.	4.2	12
4	Applications of silica-based nanomaterials in dental and skeletal biology. , 2019, , 77-112.		8
5	CTLAâ€4lg (abatacept) balances bone anabolic effects of T cells and Wntâ€10b with antianabolic effects of osteoblastic sclerostin. Annals of the New York Academy of Sciences, 2018, 1415, 21-33.	3.8	10
6	Bioactive effects of silica nanoparticles on bone cells are size, surface, and composition dependent. Acta Biomaterialia, 2018, 82, 184-196.	8.3	49
7	Nano-Hydroxyapatite Stimulation of Gene Expression Requires Fgf Receptor, Phosphate Transporter, and Erk1/2 Signaling. ACS Applied Materials & Interfaces, 2017, 9, 39185-39196.	8.0	37
8	Synthesis of pH stable, blue light-emitting diode-excited, fluorescent silica nanoparticles and effects on cell behavior. International Journal of Nanomedicine, 2017, Volume 12, 8699-8710.	6.7	3
9	Phosphorus and Malignancies. , 2017, , 241-260.		0
10	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
11	Bioactive silica nanoparticles reverse age-associated bone loss in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 959-967.	3.3	45
12	Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials, 2015, 65, 32-42.	11.4	106
13	Impact of Phosphorus-Based Food Additives on Bone and Mineral Metabolism. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 4264-4271.	3.6	54
14	Inorganic phosphate induces cancer cell mediated angiogenesis dependent on forkhead box protein C2 (FOXC2) regulated osteopontin expression. Molecular Carcinogenesis, 2015, 54, 926-934.	2.7	53
15	Bio-active engineered 50nm silica nanoparticles with bone anabolic activity: Therapeutic index, effective concentration, and cytotoxicity profile in vitro. Toxicology in Vitro, 2014, 28, 354-364.	2.4	38
16	Bioactive Silica Nanoparticles Promote Osteoblast Differentiation through Stimulation of Autophagy and Direct Association with LC3 and p62. ACS Nano, 2014, 8, 5898-5910.	14.6	170
17	The effects of thiazolidinediones on human bone marrow stromal cell differentiation inÂvitro and in thiazolidinedione-treated patients with type 2 diabetes. Translational Research, 2013, 161, 145-155.	5.0	51
18	Long-Term Monitoring of the Physicochemical Properties of Silica-Based Nanoparticles on the Rate of Endocytosis and Exocytosis and Consequences of Cell Division. Soft Materials, 2013, 11, 195-203.	1.7	17

GEORGE R BECK JR

#	Article	IF	CITATIONS
19	An integrated understanding of the physiological response to elevated extracellular phosphate. Journal of Cellular Physiology, 2013, 228, 1536-1550.	4.1	94
20	Knockdown of the Sodium-Dependent Phosphate Co-Transporter 2b (NPT2b) Suppresses Lung Tumorigenesis. PLoS ONE, 2013, 8, e77121.	2.5	37
21	Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 793-803.	3.3	204
22	Identification of the homeobox protein Prx1 (MHox, Prrx-1) as a regulator of osterix expression and mediator of tumor necrosis factor α action in osteoblast differentiation. Journal of Bone and Mineral Research, 2011, 26, 209-219.	2.8	52
23	Suppression of Lung Tumorigenesis by Leucine Zipper/EF Hand–Containing Transmembrane-1. PLoS ONE, 2010, 5, e12535.	2.5	28
24	Elevated Phosphate Activates N-ras and Promotes Cell Transformation and Skin Tumorigenesis. Cancer Prevention Research, 2010, 3, 359-370.	1.5	78
25	Toxicity and Clearance of Intratracheally Administered Multiwalled Carbon Nanotubes from Murine Lung. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010, 73, 1530-1543.	2.3	46
26	Aerosol Delivery of Small Hairpin Osteopontin Blocks Pulmonary Metastasis of Breast Cancer in Mice. PLoS ONE, 2010, 5, e15623.	2.5	23
27	High Dietary Inorganic Phosphate Increases Lung Tumorigenesis and Alters Akt Signaling. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 59-68.	5.6	120
28	New method to prepare very stable and biocompatible fluorescent silica nanoparticles. Chemical Communications, 2009, , 2881.	4.1	81
29	Analysis of the Extracellular Matrix and Secreted Vesicle Proteomes by Mass Spectrometry. Methods in Molecular Biology, 2008, 428, 231-244.	0.9	8
30	Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. Journal of Cellular Physiology, 2007, 210, 325-335.	4.1	164
31	Probing Early Growth Response 1 Interacting Proteins at the Active Promoter in Osteoblast Cells Using Oligoprecipitation and Mass Spectrometry. Journal of Proteome Research, 2006, 5, 1931-1939.	3.7	19
32	Elevated Inorganic Phosphate Stimulates Akt-ERK1/2-Mnk1 Signaling in Human Lung Cells. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 528-539.	2.9	52
33	A High Inorganic Phosphate Diet Perturbs Brain Growth, Alters Akt-ERK Signaling, and Results in Changes in Cap-Dependent Translation. Toxicological Sciences, 2006, 90, 221-229.	3.1	30
34	A Combined Proteome and Microarray Investigation of Inorganic Phosphate-induced Pre-osteoblast Cells. Molecular and Cellular Proteomics, 2005, 4, 1284-1296.	3.8	113
35	Quantitative proteomic analysis of inorganic phosphate-induced murine MC3T3-E1 osteoblast cells. Electrophoresis, 2004, 25, 1342-1352.	2.4	45
36	Inorganic phosphate as a signaling molecule in osteoblast differentiation. Journal of Cellular Biochemistry, 2003, 90, 234-243.	2.6	261

#	Article	IF	CITATIONS
37	Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2. Experimental Cell Research, 2003, 288, 288-300.	2.6	174
38	Osteopontin Regulation by Inorganic Phosphate Is ERK1/2-, Protein Kinase C-, and Proteasome-dependent. Journal of Biological Chemistry, 2003, 278, 41921-41929.	3.4	153
39	Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3-E1 osteoblasts. Journal of Cellular Biochemistry, 1998, 68, 269-280.	2.6	195