
Adam C Midgley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6042947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlling Pore Size of Electrospun Vascular Grafts by Electrospraying of Poly(Ethylene Oxide) Microparticles. Methods in Molecular Biology, 2022, 2375, 153-164.	0.4	5
2	Analysis of Human Hyaluronan Synthase Gene Transcriptional Regulation and Downstream Hyaluronan Cell Surface Receptor Mobility in Myofibroblast Differentiation. Methods in Molecular Biology, 2022, 2303, 453-468.	0.4	2
3	Exosome-mimicking nanovesicles derived from efficacy-potentiated stem cell membrane and secretome for regeneration of injured tissue. Nano Research, 2022, 15, 1680-1690.	5.8	9
4	Bioorthogonal catalytic nanozyme-mediated lysosomal membrane leakage for targeted drug delivery. Theranostics, 2022, 12, 1132-1147.	4.6	24
5	Biomimetic Design of Artificial Hybrid Nanocells for Boosted Vascular Regeneration in Ischemic Tissues. Advanced Materials, 2022, 34, e2110352.	11.1	27
6	Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering. Science Advances, 2022, 8, eabl3888.	4.7	31
7	An Injectable Dualâ€Function Hydrogel Protects Against Myocardial Ischemia/Reperfusion Injury by Modulating ROS/NO Disequilibrium. Advanced Science, 2022, 9, e2105408.	5.6	45
8	Anti-Sca-1 antibody-functionalized vascular grafts improve vascular regeneration via selective capture of endogenous vascular stem/progenitor cells. Bioactive Materials, 2022, 16, 433-450.	8.6	8
9	Prediction and Design of Nanozymes using Explainable Machine Learning. Advanced Materials, 2022, 34, e2201736.	11.1	42
10	Hydrogel and nanoparticle carriers for kidney disease therapy: trends and recent advancements. Progress in Biomedical Engineering, 2022, 4, 022006.	2.8	5
11	Advances in Bioactivity of MicroRNAs of Plant-Derived Exosome-Like Nanoparticles and Milk-Derived Extracellular Vesicles. Journal of Agricultural and Food Chemistry, 2022, 70, 6285-6299.	2.4	30
12	CD44 receptor diversity and potential in preventative and regenerative therapies. Clinical and Translational Discovery, 2022, 2, .	0.2	1
13	Biomimetic Design of Mitochondriaâ€Targeted Hybrid Nanozymes as Superoxide Scavengers. Advanced Materials, 2021, 33, e2006570.	11.1	115
14	Design and Evaluation of a Polypeptide that Mimics the Integrin Binding Site for EDA Fibronectin to Block Profibrotic Cell Activity. International Journal of Molecular Sciences, 2021, 22, 1575.	1.8	10
15	The effect of hypoxia-mimicking responses on improving the regeneration of artificial vascular grafts. Biomaterials, 2021, 271, 120746.	5.7	61
16	Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules, 2021, 11, 1095.	1.8	77
17	The Role of Alpha-1-Acid Glycoprotein in the Diagnosis and Treatment of Crush Syndrome-Induced Acute Kidney Injury. Shock, 2021, 56, 1028-1039.	1.0	9
18	Modular Assembly of Tumorâ€Penetrating and Oligomeric Nanozyme Based on Intrinsically Selfâ€Assembling Protein Nanocages. Advanced Materials, 2021, 33, e2103128.	11.1	27

ADAM C MIDGLEY

#	Article	IF	CITATIONS
19	CD147 mediates the CD44s-dependent differentiation of myofibroblasts driven by transforming growth factor-Ĵ²1. Journal of Biological Chemistry, 2021, 297, 100987.	1.6	13
20	A metal-organic-framework incorporated vascular graft for sustained nitric oxide generation and long-term vascular patency. Chemical Engineering Journal, 2021, 421, 129577.	6.6	33
21	Natural polymeric and peptide-loaded composite wound dressings for scar prevention. Applied Materials Today, 2021, 25, 101186.	2.3	15
22	Nitrate-Functionalized poly(ε-Caprolactone) Small-Diameter Vascular Grafts Enhance Vascular Regeneration via Sustained Release of Nitric Oxide. Frontiers in Bioengineering and Biotechnology, 2021, 9, 770121.	2.0	8
23	Progress and Current Limitations of Materials for Artificial Bile Duct Engineering. Materials, 2021, 14, 7468.	1.3	8
24	Nitricâ€Oxideâ€Releasing Biomaterial Regulation of the Stem Cell Microenvironment in Regenerative Medicine. Advanced Materials, 2020, 32, e1805818.	11.1	91
25	Potentials of sandwich-like chitosan/polycaprolactone/gelatin scaffolds for guided tissue regeneration membrane. Materials Science and Engineering C, 2020, 109, 110618.	3.8	59
26	Regional and sustained dual-release of growth factors from biomimetic tri-layered scaffolds for the repair of large-scale osteochondral defects. Applied Materials Today, 2020, 19, 100548.	2.3	20
27	Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics. Biomaterials, 2020, 230, 119635.	5.7	61
28	Multifunctional Natural Polymer Nanoparticles as Antifibrotic Gene Carriers for CKD Therapy. Journal of the American Society of Nephrology: JASN, 2020, 31, 2292-2311.	3.0	29
29	Supramolecular Nanofibers Containing Arginine-Glycine-Aspartate (RGD) Peptides Boost Therapeutic Efficacy of Extracellular Vesicles in Kidney Repair. ACS Nano, 2020, 14, 12133-12147.	7.3	123
30	Particle-based artificial three-dimensional stem cell spheroids for revascularization of ischemic diseases. Science Advances, 2020, 6, eaaz8011.	4.7	40
31	Hyaluronidase-2 Regulates RhoA Signaling, Myofibroblast Contractility, and Other Key Profibrotic Myofibroblast Functions. American Journal of Pathology, 2020, 190, 1236-1255.	1.9	11
32	Targeted Repair of Vascular Injury by Adiposeâ€Derived Stem Cells Modified with Pâ€Selectin Binding Peptide. Advanced Science, 2020, 7, 1903516.	5.6	28
33	Validation of PM2.5 model particle through physicochemical evaluation and atherosclerotic plaque formation in ApoE-/- mice. Ecotoxicology and Environmental Safety, 2020, 192, 110308.	2.9	8
34	The Incorporation and Release of Bioactive Molecules in Vascular Grafts. , 2020, , 411-427.		0
35	The Incorporation and Release of Bioactive Molecules in Vascular Grafts. , 2020, , 1-17.		0
36	Regulation of the inflammatory response by vascular grafts modified with Aspirin-Triggered Resolvin D1 promotes blood vessel regeneration. Acta Biomaterialia, 2019, 97, 360-373.	4.1	38

ADAM C MIDGLEY

#	Article	IF	CITATIONS
37	In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nature Communications, 2019, 10, 4620.	5.8	192
38	Multifunctional Triple-Layered Composite Scaffolds Combining Platelet-Rich Fibrin Promote Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 6691-6702.	2.6	18
39	Bilayered Polymeric Micro- and Nanofiber Vascular Grafts as Abdominal Aorta Replacements: Long-Term in Vivo Studies in a Rat Model. ACS Applied Bio Materials, 2019, 2, 4493-4502.	2.3	9
40	Subcutaneously engineered autologous extracellular matrix scaffolds with aligned microchannels for enhanced tendon regeneration. Biomaterials, 2019, 224, 119488.	5.7	26
41	MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials, 2019, 204, 13-24.	5.7	98
42	Polycaprolactone/gelatin degradable vascular grafts simulating endothelium functions modified by nitric oxide generation. Regenerative Medicine, 2019, 14, 1089-1105.	0.8	11
43	Rapid endothelialization and controlled smooth muscle regeneration by electrospun heparinâ€loaded polycaprolactone/gelatin hybrid vascular grafts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2040-2049.	1.6	55
44	Cobalt-mediated multi-functional dressings promote bacteria-infected wound healing. Acta Biomaterialia, 2019, 86, 465-479.	4.1	65
45	Progress in the development of nitric oxide-releasing biomaterials and their biomedical applications. Scientia Sinica Vitae, 2019, 49, 1109-1118.	0.1	1
46	The cell source in tissue regeneration of vascular grafts. Scientia Sinica Vitae, 2019, 49, 1100-1108.	0.1	1
47	Cordyceps sinensis : Anti-fibrotic and inflammatory effects of a cultured polysaccharide extract. Bioactive Carbohydrates and Dietary Fibre, 2018, 14, 2-8.	1.5	14
48	Construction of a bilayered vascular graft with smooth internal surface for improved hemocompatibility and endothelial cell monolayer formation. Biomaterials, 2018, 181, 1-14.	5.7	64
49	Nuclear hyaluronidase 2 drives alternative splicing of <i>CD44</i> pre-mRNA to determine profibrotic or antifibrotic cell phenotype. Science Signaling, 2017, 10, .	1.6	29
50	Hepatocyte Growth Factor Mediates Enhanced Wound Healing Responses and Resistance to Transforming Growth Factor-1²1-Driven Myofibroblast Differentiation in Oral Mucosal Fibroblasts. International Journal of Molecular Sciences, 2017, 18, 1843.	1.8	28
51	Tumor Necrosis Factor-stimulated Gene 6 (TSG-6)-mediated Interactions with the Inter-α-inhibitor Heavy Chain 5 Facilitate Tumor Growth Factor β1 (TGFβ1)-dependent Fibroblast to Myofibroblast Differentiation. Journal of Biological Chemistry, 2016, 291, 13789-13801.	1.6	40
52	17β-estradiol ameliorates age-associated loss of fibroblast function by attenuating IFN-γ/STAT1-dependent miR-7 upregulation. Aging Cell, 2016, 15, 531-541.	3.0	36
53	Hyaluronan Regulates Bone Morphogenetic Protein-7-dependent Prevention and Reversal of Myofibroblast Phenotype. Journal of Biological Chemistry, 2015, 290, 11218-11234.	1.6	31
54	Analysis of Human Hyaluronan Synthase Gene Transcriptional Regulation and Downstream Hyaluronan Cell Surface Receptor Mobility in Myofibroblast Differentiation. Methods in Molecular Biology, 2015, 1229, 605-618.	0.4	5

#	Article	IF	CITATIONS
55	Cordyceps sinensis: InÂvitro anti-fibrotic bioactivity of natural andÂcultured preparations. Food Hydrocolloids, 2014, 35, 444-452.	5.6	17
56	Micro <scp>RNA</scp> â€7 inhibition rescues ageâ€associated loss of epidermal growth factor receptor and hyaluronanâ€dependent differentiation in fibroblasts. Aging Cell, 2014, 13, 235-244.	3.0	32
57	Transforming Growth Factor-β1 (TGF-β1)-stimulated Fibroblast to Myofibroblast Differentiation Is Mediated by Hyaluronan (HA)-facilitated Epidermal Growth Factor Receptor (EGFR) and CD44 Co-localization in Lipid Rafts. Journal of Biological Chemistry, 2013, 288, 14824-14838.	1.6	220