Zhihui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/604280/publications.pdf

Version: 2024-02-01

86 papers

2,898 citations

186209
28
h-index

50 g-index

96 all docs 96 docs citations

96 times ranked 3286 citing authors

#	Article	IF	CITATIONS
1	Translational Modeling Identifies Synergy between Nanoparticle-Delivered miRNA-22 and Standard-of-Care Drugs in Triple-Negative Breast Cancer. Pharmaceutical Research, 2022, 39, 511-528.	1.7	12
2	Genetic and Structural Analysis of SARS-CoV-2 Spike Protein for Universal Epitope Selection. Molecular Biology and Evolution, 2022, 39, .	3.5	7
3	Dedifferentiation-mediated stem cell niche maintenance in early-stage ductal carcinoma in situ progression: insights from a multiscale modeling study. Cell Death and Disease, 2022, 13, .	2.7	5
4	A Mathematical Model to Estimate Chemotherapy Concentration at the Tumor-Site and Predict Therapy Response in Colorectal Cancer Patients with Liver Metastases. Cancers, 2021, 13, 444.	1.7	14
5	Amphibian regeneration and mammalian cancer: Similarities and contrasts from an evolutionary biology perspective. BioEssays, 2021, 43, e2000339.	1.2	5
6	ncRNA therapy with miRNA-22-3p suppresses the growth of triple-negative breast cancer. Molecular Therapy - Nucleic Acids, 2021, 23, 930-943.	2.3	26
7	Targeted phage display-based pulmonary vaccination in mice and non-human primates. Med, 2021, 2, 321-342.e8.	2.2	18
8	Is the worst of the COVID-19 global pandemic yet to come? Application of financial mathematics as candidate predictive tools. Translational Psychiatry, 2021, 11, 299.	2.4	6
9	Conversion of RNA Aptamer into Modified DNA Aptamers Provides for Prolonged Stability and Enhanced Antitumor Activity. Journal of the American Chemical Society, 2021, 143, 7655-7670.	6.6	34
10	Targeting a cell surface vitamin D receptor on tumor-associated macrophages in triple-negative breast cancer. ELife, 2021, 10, .	2.8	18
11	Predicting immune checkpoint inhibitor response with mathematical modeling. Immunotherapy, 2021, 13, 1151-1155.	1.0	2
12	A mathematical model for the quantification of a patient's sensitivity to checkpoint inhibitors and long-term tumour burden. Nature Biomedical Engineering, 2021, 5, 297-308.	11.6	28
13	Innate Immunity Plays a Key Role in Controlling Viral Load in COVID-19: Mechanistic Insights from a Whole-Body Infection Dynamics Model. ACS Pharmacology and Translational Science, 2021, 4, 248-265.	2.5	36
14	Emerging Lipid-Coated Silica Nanoparticles for Cancer Therapy. Nanotechnology in the Life Sciences, 2021, , 335-361.	0.4	4
15	Early prediction of clinical response to checkpoint inhibitor therapy in human solid tumors through mathematical modeling. ELife, 2021, 10, .	2.8	8
16	A Multiscale Model to Identify Limiting Factors in Nanoparticle-Based miRNA Delivery for Tumor Inhibition., 2021, 2021, 4230-4233.		3
17	A Multiscale Agent-Based Model of Ductal Carcinoma <i>In Situ</i> li>IEEE Transactions on Biomedical Engineering, 2020, 67, 1450-1461.	2.5	16
18	The Value of Obstetric Ultrasound in Screening Fetal Nervous System Malformation. World Neurosurgery, 2020, 138, 645-653.	0.7	10

#	Article	IF	Citations
19	Imaging-Based Subtypes of Pancreatic Ductal Adenocarcinoma Exhibit Differential Growth and Metabolic Patterns in the Pre-Diagnostic Period: Implications for Early Detection. Frontiers in Oncology, 2020, 10, 596931.	1.3	10
20	Investigating the Effect of Aging on the Pharmacokinetics and Tumor Delivery of Nanomaterials using Mathematical Modeling., 2020, 2020, 2447-2450.		2
21	Intratumoral injection of hydrogel-embedded nanoparticles enhances retention in glioblastoma. Nanoscale, 2020, 12, 23838-23850.	2.8	38
22	Mathematical prediction of clinical outcomes in advanced cancer patients treated with checkpoint inhibitor immunotherapy. Science Advances, 2020, 6, eaay6298.	4.7	41
23	Changes in condylar position with maxillary expansion in growing patients. A systematic review of clinical studies. Orthodontic Waves, 2020, 79, 1-10.	0.2	2
24	A mathematical model to predict nanomedicine pharmacokinetics and tumor delivery. Computational and Structural Biotechnology Journal, 2020, 18, 518-531.	1.9	61
25	Sequential deconstruction of composite drug transport in metastatic breast cancer. Science Advances, 2020, 6, eaba4498.	4.7	17
26	Therapeutic potential of FLANC, a novel primate-specific long non-coding RNA in colorectal cancer. Gut, 2020, 69, 1818-1831.	6.1	80
27	Imageâ€guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1628.	3.3	24
28	Mathematical Modeling to Address Challenges in Pancreatic Cancer. Current Topics in Medicinal Chemistry, 2020, 20, 367-376.	1.0	16
29	Sizeâ€Optimized Ultrasmall Porous Silica Nanoparticles Depict Vasculatureâ€Based Differential Targeting in Triple Negative Breast Cancer. Small, 2019, 15, e1903747.	5. 2	39
30	Development of a Physiologically-Based Mathematical Model for Quantifying Nanoparticle Distribution in Tumors., 2019, 2019, 2852-2855.		1
31	A Machine Learning Model to Predict Hepatocellular Carcinoma Response to Transcatheter Arterial Chemoembolization. Radiology: Artificial Intelligence, 2019, 1, e180021.	3.0	76
32	Dynamic Targeting in Cancer Treatment. Frontiers in Physiology, 2019, 10, 96.	1.3	22
33	Mathematical modeling in cancer nanomedicine: a review. Biomedical Microdevices, 2019, 21, 40.	1.4	122
34	Multiscale Modeling of Ductal Carcinoma In Situ. Biophysical Journal, 2019, 116, 322a-323a.	0.2	1
35	Tumor core biopsies adequately represent immune microenvironment of high-grade serous carcinoma. Scientific Reports, 2019, 9, 17589.	1.6	12
36	Predicting breast cancer response to neoadjuvant chemotherapy based on tumor vascular features in needle biopsies. JCI Insight, 2019, 4, .	2.3	17

#	Article	IF	CITATIONS
37	Dithieno [3,2- <i>b</i> :2â \in 2,3â \in 2- <i>d</i>]pyrrole-based hole transport materials for perovskite solar cells with efficiencies over 18%. Journal of Materials Chemistry A, 2018, 6, 7950-7958.	5.2	122
38	Understanding Ductal Carcinoma In Situ Invasion using a Multiscale Agent-Based Model*., 2018, 2018, 5846-5849.		1
39	Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nature Communications, 2018, 9, 4551.	5.8	189
40	Understanding the Connection between Nanoparticle Uptake and Cancer Treatment Efficacy using Mathematical Modeling. Scientific Reports, 2018, 8, 7538.	1.6	49
41	Analysis of magnetic resonance tomographic angiography false negatives in trigeminal neuralgia before microvascular decompression. Oral Radiology, 2017, 33, 45-50.	0.9	3
42	Evaluation of trabecular structure changes in osteoarthritis of the temporomandibular joint with cone beam computed tomography imaging. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2017, 124, 315-322.	0.2	20
43	Comparison of micro-CT and cone beam CT on the feasibility of assessing trabecular structures in mandibular condyle. Dentomaxillofacial Radiology, 2017, 46, 20160435.	1.3	18
44	Editorial Special Section on Multiscale Cancer Modeling. IEEE Transactions on Biomedical Engineering, 2017, 64, 501-503.	2.5	11
45	Development of a three dimensional, multiscale agent-based model of ductal carcinoma in situ. , 2017, 2017, 86-89.		6
46	Theory and Experimental Validation of a Spatio-temporal Model of Chemotherapy Transport to Enhance Tumor Cell Kill. PLoS Computational Biology, 2016, 12, e1004969.	1.5	55
47	Development of a three dimensional, lattice-free multiscale model of the mammary terminal end bud., 2016, 2016, 6134-6137.		2
48	A hybrid agent-based model of the developing mammary terminal end bud. Journal of Theoretical Biology, 2016, 407, 259-270.	0.8	10
49	A modeling approach to study the normal mammary gland growth process. , 2015, 2015, 1444-7.		2
50	Computer Simulation, Visualization, and Image Processing of Cancer Data and Processes. Cancer Informatics, 2015, 14s4, CIN.S37982.	0.9	0
51	Integrated PK-PD and agent-based modeling in oncology. Journal of Pharmacokinetics and Pharmacodynamics, 2015, 42, 179-189.	0.8	55
52	Simulating cancer growth with multiscale agent-based modeling. Seminars in Cancer Biology, 2015, 30, 70-78.	4.3	183
53	Predictive Modeling of Drug Response in Non-Hodgkin's Lymphoma. PLoS ONE, 2015, 10, e0129433.	1.1	24
54	Semantically Linking in Silico Cancer Models. Cancer Informatics, 2014, 13s1, CIN.S13895.	0.9	9

#	Article	IF	Citations
55	Development of a diffusion-based mathematical model for predicting chemotherapy effects., 2014, 2014, 2480-3.		O
56	Mathematical modeling in cancer drug discovery. Drug Discovery Today, 2014, 19, 145-150.	3.2	53
57	Understanding Drug Resistance in Breast Cancer with Mathematical Oncology. Current Breast Cancer Reports, 2014, 6, 110-120.	0.5	38
58	Development of a samplingâ€based global sensitivity analysis workflow for multiscale computational cancer models. IET Systems Biology, 2014, 8, 191-197.	0.8	27
59	Agent-based Modeling., 2013,, 13-13.		0
60	Mechanistic Modeling Identifies Drug-Uptake History as Predictor of Tumor Drug Resistance and Nano-Carrier-Mediated Response. ACS Nano, 2013, 7, 11174-11182.	7.3	63
61	Accelerating cancer systems biology research through Semantic Web technology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 135-151.	6.6	11
62	Article Commentary: Dealing with Diversity in Computational Cancer Modeling. Cancer Informatics, 2013, 12, CIN.S11583.	0.9	15
63	Mechanistic patient-specific predictive correlation of tumor drug response with microenvironment and perfusion measurements. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14266-14271.	3.3	65
64	Integration of Molecular Signaling into Multiscale Modeling of Cancer. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2013, , 381-394.	0.7	0
65	Connecting digital cancer model repositories with markup. ACM SIGBioinformatics Record, 2013, 3, 5-11.	0.3	4
66	Impact of Diffusion Barriers to Small Cytotoxic Molecules on the Efficacy of Immunotherapy in Breast Cancer. PLoS ONE, 2013, 8, e61398.	1.1	29
67	Multilevel Modeling, Cell Proliferation. , 2013, , 1464-1467.		0
68	Identifying therapeutic targets in a combined EGFR-TGFÂR signalling cascade using a multiscale agent-based cancer model. Mathematical Medicine and Biology, 2012, 29, 95-108.	0.8	28
69	Multiscale Cancer Modeling. Annual Review of Biomedical Engineering, 2011, 13, 127-155.	5.7	353
70	Identification of Critical Molecular Components in a Multiscale Cancer Model Based on the Integration of Monte Carlo, Resampling, and ANOVA. Frontiers in Physiology, 2011, 2, 35.	1.3	29
71	Discovering molecular targets in cancer with multiscale modeling. Drug Development Research, 2011, 72, 45-52.	1.4	11
72	Multiscale agent-based cancer modeling. Journal of Mathematical Biology, 2009, 58, 545-559.	0.8	136

#	Article	IF	CITATIONS
73	Simulating brain tumor heterogeneity with a multiscale agent-based model: Linking molecular signatures, phenotypes and expansion rate. Mathematical and Computer Modelling, 2009, 49, 307-319.	2.0	69
74	Cross-scale, cross-pathway evaluation using an agent-based non-small cell lung cancer model. Bioinformatics, 2009, 25, 2389-2396.	1.8	66
75	Using magnetic resonance microscopy to study the growth dynamics of a glioma spheroid in collagen I: A case study. BMC Medical Imaging, 2008, 8, 3.	1.4	15
76	A new concept for cancer therapy: out-competing the aggressor. Cancer Cell International, 2008, 8, 19.	1.8	7
77	Cross-scale sensitivity analysis of a non-small cell lung cancer model: Linking molecular signaling properties to cellular behavior. BioSystems, 2008, 92, 249-258.	0.9	31
78	Computational modeling of brain tumors: discrete, continuum or hybrid?. Scientific Modeling and Simulation SMNS, 2008, 15, 381.	0.8	45
79	Life Sciences and the web: a new era for collaboration. Molecular Systems Biology, 2008, 4, 201.	3.2	29
80	Computational modeling of brain tumors: discrete, continuum or hybrid?. Lecture Notes in Computational Science and Engineering, 2008, , 381-393.	0.1	12
81	Cancer dissemination: A consequence of limited carrying capacity?. Medical Hypotheses, 2007, 69, 173-177.	0.8	16
82	Simulating non-small cell lung cancer with a multiscale agent-based model. Theoretical Biology and Medical Modelling, 2007, 4, 50.	2.1	81
83	A Java-Based Enterprise System Architecture for Implementing a Continuously Supported and Entirely Web-Based Exercise Solution. IEEE Transactions on Information Technology in Biomedicine, 2006, 10, 403-411.	3.6	4
84	Personal customizing exercise with a wearable measurement and control unit. Journal of NeuroEngineering and Rehabilitation, 2005, 2, 14.	2.4	10
85	Development of a Wearable Measurement and Control Unit for Personal Customizing Machine-Supported Exercise., 2005, 2006, 1000-3.		0
86	An Introduction to Physical Oncology. , 0, , .		39