Harinder Hundal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6042696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caveolinâ€3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 838-858.	7.3	19
2	Mono- and Polyunsaturated Fatty Acids Counter Palmitate-Induced Mitochondrial Dysfunction in Rat Skeletal Muscle Cells. Cellular Physiology and Biochemistry, 2020, 54, 975-993.	1.6	8
3	GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues. FASEB Journal, 2019, 33, 1299-1312.	0.5	46
4	Proinflammatory NFkB signalling promotes mitochondrial dysfunction in skeletal muscle in response to cellular fuel overloading. Cellular and Molecular Life Sciences, 2019, 76, 4887-4904.	5.4	84
5	CDK7 is a component of the integrated stress response regulating SNAT2 (SLC38A2)/System A adaptation in response to cellular amino acid deprivation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 978-991.	4.1	6
6	Combined Hyperglycemia- and Hyperinsulinemia-Induced Insulin Resistance in Adipocytes Is Associated With Dual Signaling Defects Mediated by PKC-ζ. Endocrinology, 2018, 159, 1658-1677.	2.8	11
7	Effects of Sodium and Amino Acid Substrate Availability upon the Expression and Stability of the SNAT2 (SLC38A2) Amino Acid Transporter. Frontiers in Pharmacology, 2018, 9, 63.	3.5	24
8	Michael John Rennie, MSc, PhD, FRSE, FHEA, 1946–2017: an appreciation of his work on protein metabolism in human muscle. American Journal of Clinical Nutrition, 2017, 106, 1-9.	4.7	39
9	Lipid modulation of skeletal muscle mass and function. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 190-201.	7.3	153
10	The endocannabinoid system: â€~NO' longer anonymous in the control of nitrergic signalling?. Journal of Molecular Cell Biology, 2017, 9, 91-103.	3.3	21
11	Is REDD1 a Metabolic Éminence Grise ?. Trends in Endocrinology and Metabolism, 2016, 27, 868-880.	7.1	42
12	Modulation of cellular redox homeostasis by the endocannabinoid system. Open Biology, 2016, 6, 150276.	3.6	63
13	Crumbs 3b promotes tight junctions in an ezrin-dependent manner in mammalian cells. Journal of Molecular Cell Biology, 2016, 8, 439-455.	3.3	23
14	Iron depletion suppresses mTORC1-directed signalling in intestinal Caco-2 cells via induction of REDD1. Cellular Signalling, 2016, 28, 412-424.	3.6	46
15	<scp>CB</scp> 1 receptor blockade counters ageâ€induced insulin resistance and metabolic dysfunction. Aging Cell, 2016, 15, 325-335.	6.7	28
16	GSK3-mediated raptor phosphorylation supports amino-acid-dependent mTORC1-directed signalling. Biochemical Journal, 2015, 470, 207-221.	3.7	55
17	Proteasomal Modulation of Cellular SNAT2 (SLC38A2) Abundance and Function by Unsaturated Fatty Acid Availability. Journal of Biological Chemistry, 2015, 290, 8173-8184.	3.4	35
18	Ganglioside GM3 as a gatekeeper of obesityâ€associated insulin resistance: Evidence and mechanisms. FEBS Letters. 2015, 589, 3221-3227.	2.8	47

#	Article	IF	CITATIONS
19	NEU3 sialidase as a marker of insulin sensitivity: Regulation by fatty acids. Cellular Signalling, 2015, 27, 1742-1750.	3.6	15
20	Enhanced Insulin Sensitivity Associated with Provision of Mono and Polyunsaturated Fatty Acids in Skeletal Muscle Cells Involves Counter Modulation of PP2A. PLoS ONE, 2014, 9, e92255.	2.5	24
21	Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. Cellular Signalling, 2014, 26, 2343-2349.	3.6	39
22	Mitochondria: a possible nexus for the regulation of energy homeostasis by the endocannabinoid system?. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1-E13.	3.5	32
23	Characterising the Inhibitory Actions of Ceramide upon Insulin Signaling in Different Skeletal Muscle Cell Models: A Mechanistic Insight. PLoS ONE, 2014, 9, e101865.	2.5	44
24	Mitochondrial Substrate Availability and Its Role in Lipid-Induced Insulin Resistance and Proinflammatory Signaling in Skeletal Muscle. Diabetes, 2013, 62, 3426-3436.	0.6	21
25	Endocannabinoids in obesity: brewing up the perfect metabolic storm?. Environmental Sciences Europe, 2013, 2, 49-63.	5.5	4
26	Defining the role of DAG, mitochondrial function, and lipid deposition in palmitate-induced proinflammatory signaling and its counter-modulation by palmitoleate. Journal of Lipid Research, 2013, 54, 2366-2378.	4.2	36
27	Defining the Contribution of AMP-activated Protein Kinase (AMPK) and Protein Kinase C (PKC) in Regulation of Glucose Uptake by Metformin in Skeletal Muscle Cells. Journal of Biological Chemistry, 2012, 287, 20088-20099.	3.4	84
28	New vistas for treatment of obesity and diabetes? Endocannabinoid signalling and metabolism in the modulation of energy balance. BioEssays, 2012, 34, 681-691.	2.5	15
29	SNAT2 transceptor signalling via mTOR A role in cell growth and proliferation. Frontiers in Bioscience - Elite, 2011, E3, 1289-1299.	1.8	59
30	Counter-modulation of fatty acid-induced pro-inflammatory nuclear factor κB signalling in rat skeletal muscle cells by AMP-activated protein kinase. Biochemical Journal, 2011, 435, 463-474.	3.7	69
31	Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance. Diabetologia, 2011, 54, 1596-1607.	6.3	65
32	Chronic Effects of Palmitate Overload on Nutrient-Induced Insulin Secretion and Autocrine Signalling in Pancreatic MIN6 Beta Cells. PLoS ONE, 2011, 6, e25975.	2.5	31
33	Generation, validation and humanisation of a novel insulin resistant cell model. Biochemical Pharmacology, 2010, 80, 1042-1049.	4.4	3
34	Mechanisms involved in the enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of myostatinâ€deficient mice. FEBS Letters, 2010, 584, 2403-2408.	2.8	67
35	Regulation of MAP Kinase–Directed Mitogenic and Protein Kinase B–Mediated Signaling by Cannabinoid Receptor Type 1 in Skeletal Muscle Cells. Diabetes, 2010, 59, 375-385.	0.6	66
36	Cellular depletion of atypical PKCλ is associated with enhanced insulin sensitivity and glucose uptake in L6 rat skeletal muscle cells. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E402-E412.	3.5	24

#	Article	IF	CITATIONS
37	ABC50 Promotes Translation Initiation in Mammalian Cells. Journal of Biological Chemistry, 2009, 284, 24061-24073.	3.4	91
38	Modulating serine palmitoyl transferase (SPT) expression and activity unveils a crucial role in lipid-induced insulin resistance in rat skeletal muscle cells. Biochemical Journal, 2009, 417, 791-801.	3.7	77
39	Tertiary active transport of amino acids reconstituted by coexpression of System A and L transporters in <i>Xenopus</i> oocytes. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E822-E829.	3.5	66
40	Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E603-E613.	3.5	264
41	Expression and modulation of TUB by insulin and thyroid hormone in primary rat and murine 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 2009, 390, 1328-1333.	2.1	12
42	Use of Akt Inhibitor and a Drug-resistant Mutant Validates a Critical Role for Protein Kinase B/Akt in the Insulin-dependent Regulation of Glucose and System A Amino Acid Uptake. Journal of Biological Chemistry, 2008, 283, 27653-27667.	3.4	96
43	Targeting of PKCζ and PKB to caveolin-enriched microdomains represents a crucial step underpinning the disruption in PKB-directed signalling by ceramide. Biochemical Journal, 2008, 410, 369-379.	3.7	99
44	Distinct Sensor Pathways in the Hierarchical Control of SNAT2, a Putative Amino Acid Transceptor, by Amino Acid Availability. Journal of Biological Chemistry, 2007, 282, 19788-19798.	3.4	108
45	The PPARδ agonist, GW501516, promotes fatty acid oxidation but has no direct effect on glucose utilisation or insulin sensitivity in rat L6 skeletal muscle cells. FEBS Letters, 2007, 581, 4743-4748.	2.8	33
46	Evidence for allosteric regulation of pH-sensitive System A (SNAT2) and System N (SNAT5) amino acid transporter activity involving a conserved histidine residue. Biochemical Journal, 2006, 397, 369-375.	3.7	37
47	Differential effects of palmitate and palmitoleate on insulin action and glucose utilization in rat L6 skeletal muscle cells. Biochemical Journal, 2006, 399, 473-481.	3.7	199
48	Ceramide downâ€regulates System A amino acid transport and protein synthesis in rat skeletal muscle cells. FASEB Journal, 2005, 19, 1-24.	0.5	106
49	Constitutive Activation of GSK3 Down-regulates Glycogen Synthase Abundance and Glycogen Deposition in Rat Skeletal Muscle Cells. Journal of Biological Chemistry, 2005, 280, 9509-9518.	3.4	53
50	Insulin-Stimulated Glucose Uptake Does Not Require p38 Mitogen-Activated Protein Kinase in Adipose Tissue or Skeletal Muscle. Diabetes, 2005, 54, 3161-3168.	0.6	23
51	Intracellular ceramide synthesis and protein kinase Cζ activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochemical Journal, 2004, 382, 619-629.	3.7	230
52	Signalling mechanisms underlying the rapid and additive stimulation of NKCC activity by insulin and hypertonicity in rat L6 skeletal muscle cells. Journal of Physiology, 2004, 560, 123-136.	2.9	23
53	Fructose transport and metabolism in adipose tissue of Zucker rats: Diminished GLUT5 activity during obesity and insulin resistance. Molecular and Cellular Biochemistry, 2004, 261, 23-33.	3.1	41
54	Momordica charantia fruit juice stimulates glucose and amino acid uptakes in L6 myotubes. Molecular and Cellular Biochemistry, 2004, 261, 99-104.	3.1	65

#	Article	IF	CITATIONS
55	Use of lithium and SB-415286 to explore the role of glycogen synthase kinase-3 in the regulation of glucose transport and glycogen synthase. FEBS Journal, 2003, 270, 3829-3838.	0.2	56
56	Insulin regulates the expression of the GLUT5 transporter in L6 skeletal muscle cells. FEBS Letters, 2003, 549, 77-82.	2.8	16
57	Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochemical Journal, 2003, 373, 1-18.	3.7	308
58	Ceramide Disables 3-Phosphoinositide Binding to the Pleckstrin Homology Domain of Protein Kinase B (PKB)/Akt by a PKCζ-Dependent Mechanism. Molecular and Cellular Biology, 2003, 23, 7794-7808.	2.3	305
59	Insulin Promotes the Cell Surface Recruitment of the SAT2/ATA2 System A Amino Acid Transporter from an Endosomal Compartment in Skeletal Muscle Cells. Journal of Biological Chemistry, 2002, 277, 13628-13634.	3.4	90
60	Intracellular Sensing of Amino Acids in Xenopus laevis Oocytes Stimulates p70 S6 Kinase in a Target of Rapamycin-dependent Manner. Journal of Biological Chemistry, 2002, 277, 9952-9957.	3.4	112
61	Mechanisms of Glutamine Transport in Rat Adipocytes and Acute Regulation by Cell Swelling. Cellular Physiology and Biochemistry, 2001, 11, 259-270.	1.6	36
62	Intracellular signalling mechanisms regulating glucose transport in insulin-sensitive tissues. Molecular Membrane Biology, 2001, 18, 195-204.	2.0	42
63	Protein kinase B (PKB/Akt) - a key regulator of glucose transport?. FEBS Letters, 2001, 492, 199-203.	2.8	238
64	Regulation of amino acid transporters by amino acid availability. Current Opinion in Clinical Nutrition and Metabolic Care, 2001, 4, 425-431.	2.5	18
65	Subcellular localization and adaptive up-regulation of the System A (SAT2) amino acid transporter in skeletal-muscle cells and adipocytes. Biochemical Journal, 2001, 355, 563-568.	3.7	78
66	Ceramide impairs the insulin-dependent membrane recruitment of Protein Kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia, 2001, 44, 173-183.	6.3	202
67	l-Leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the l-leucine-induced up-regulation of System A amino acid transport. Biochemical lournal 2000 350 361	3.7	44
68	A role for the actin cytoskeleton in the hormonal and growth-factor-mediated activation of protein kinase B. Biochemical Journal, 2000, 352, 617.	3.7	18
69	l-Leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the l-leucine-induced up-regulation of System A amino acid transport. Biochemical lournal. 2000. 350. 361-368.	3.7	179
70	Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes, 2000, 49, 1978-1985.	0.6	157
71	Identification and Biochemical Localization of a Na-K-Cl Cotransporter in the Human Placental Cell Line BeWo. Biochemical and Biophysical Research Communications, 2000, 274, 43-48.	2.1	18
72	Lactate transport in rat adipocytes: identification of monocarboxylate transporter 1 (MCT1) and its modulation during streptozotocin-induced diabetes. FEBS Letters, 2000, 479, 89-92.	2.8	28

#	Article	IF	CITATIONS
73	A role for the actin cytoskeleton in the hormonal and growth-factor-mediated activation of protein kinase B. Biochemical Journal, 2000, 352, 617-622.	3.7	49
74	Regulation of Glucose Transport and Glycogen Synthesis in L6 Muscle Cells during Oxidative Stress. Journal of Biological Chemistry, 1999, 274, 36293-36299.	3.4	153
75	Characterization of Glucose Transport and Glucose Transporters in the Human Choriocarcinoma Cell Line, BeWo. Placenta, 1999, 20, 651-659.	1.5	28
76	Biochemical Localisation of the 5-HT2A(serotonin) Receptor in Rat Skeletal Muscle. Biochemical and Biophysical Research Communications, 1999, 257, 369-372.	2.1	29
77	Serotonin (5-Hydroxytryptamine), a Novel Regulator of Glucose Transport in Rat Skeletal Muscle. Journal of Biological Chemistry, 1999, 274, 13563-13568.	3.4	108
78	Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes. Diabetologia, 1998, 41, 821-828.	6.3	58
79	Regulation of System A amino acid transport in L6 rat skeletal muscle cells by insulin, chemical and hyperthermic stress. FEBS Letters, 1998, 441, 15-19.	2.8	46
80	Constitutive activation of protein kinase B alpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis, and inactivation of glycogen synthase kinase 3 in L6 muscle cells. Diabetes, 1998, 47, 1006-1013.	0.6	309
81	Biochemical and functional characterization of the GLUT5 fructose transporter in rat skeletal muscle. Biochemical Journal, 1998, 336, 361-366.	3.7	36
82	GLUT5 Expression and Fructose Transport in Human Skeletal Muscle. Advances in Experimental Medicine and Biology, 1998, 441, 35-45.	1.6	22
83	Proteolytic cleavage of cellubrevin and vesicle-associated membrane protein (VAMP) by tetanus toxin does not impair insulin-stimulated glucose transport or GLUT4 translocation in rat adipocytes. Biochemical Journal, 1997, 321, 233-238.	3.7	22
84	Identification and characterization of two distinct intracellular GLUT4 pools in rat skeletal muscle: evidence for an endosomal and an insulin-sensitive GLUT4 compartment. Biochemical Journal, 1997, 325, 727-732.	3.7	68
85	GLUT5 and fructose transport in human skeletal muscle. Biochemical Society Transactions, 1997, 25, 473S-473S.	3.4	5
86	Glucose transport correlates with GLUT2 abundance in rat liver during altered thyroid status. Molecular and Cellular Endocrinology, 1997, 128, 97-102.	3.2	29
87	Inositol Phospholipid 3-Kinase is Activated by Cellular Stress but is not Required for the Stress-Induced Activation of Glucose Transport in L6 Rat Skeletal Muscle Cells. FEBS Journal, 1997, 247, 306-313.	0.2	30
88	Analyses of the co-localization of cellubrevin and the GLUT4 glucose transporter in rat and human insulin-responsive tissues. FEBS Letters, 1996, 395, 211-216.	2.8	5
89	Do subcellular fractionation studies of skeletal muscle yield useful information regarding sarcolemmal components?. FEBS Letters, 1996, 384, 204-205.	2.8	3
90	Glutamine Metabolism and Transport in Skeletal Muscle and Heart and Their Clinical Relevance. Journal of Nutrition, 1996, 126, 1142S-1149S.	2.9	54

#	Article	IF	CITATIONS
91	Amino acid transport in heart and skeletal muscle and the functional consequences. Biochemical Society Transactions, 1996, 24, 869-874.	3.4	26
92	Effects of Limb Immobilization on Cytochrome C Oxidase Activity and GLUT4 and GLUT5 Protein Expression in Human Skeletal Muscle. Clinical Science, 1996, 91, 591-599.	4.3	35
93	Isolation and characterization of two intracellular CLUT4 glucose transporter pools in rat skeletal muscle. Biochemical Society Transactions, 1996, 24, 190S-190S.	3.4	2
94	Rab4, But Not the Transferrin Receptor, Is Colocalized with GLUT4 in an Insulin-Sensitive Intracellular Compartment in Rat Skeletal Muscle. Biochemical and Biophysical Research Communications, 1995, 215, 321-328.	2.1	32
95	Sedimentation and immunological analyses of GLUT4 and α2-Na,K-ATPase subunit-containing vesicles from rat skeletal muscle: evidence for segregation. FEBS Letters, 1995, 376, 211-215.	2.8	10
96	Subcellular distribution and immunocytochemical localization of Na,K-ATPase subunit isoforms in human skeletal muscle. Molecular Membrane Biology, 1994, 11, 255-262.	2.0	61
97	Expression of Î ² subunit isoforms of the Na+,K+-ATPase is muscle type-specific. FEBS Letters, 1993, 328, 253-258.	2.8	68
98	Regulation of Glucose Transporters and the Na/K-ATPase by Insulin in Skeletal Muscle. Advances in Experimental Medicine and Biology, 1993, 334, 63-78.	1.6	9
99	A role for membrane transport in modulation of intramuscular free glutamine turnover in streptozotocin diabetic rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1992, 1180, 137-146.	3.8	6
100	Effects of corticosteroid on the transport and metabolism of glutamine in rat skeletal muscle. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1092, 376-383.	4.1	31
101	Transport of glutamine inXenopus laevis oocytes: Relationship with transport of other amino acids. Journal of Membrane Biology, 1989, 112, 149-157.	2.1	35
102	Skeletal muscle glutamine transport, intramuscular glutamine concentration, and muscle-protein turnover. Metabolism: Clinical and Experimental, 1989, 38, 47-51.	3.4	94
103	l(+)-Lactate transport perfused rat skeletal muscle: kinetic characteristics and sensitivity to pH and transport inhibitors. Biochimica Et Biophysica Acta - Biomembranes, 1988, 944, 213-222.	2.6	75
104	Characteristics of Lâ€glutamine transport in perfused rat skeletal muscle Journal of Physiology, 1987, 393, 283-305.	2.9	107