
Sian Ellard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6042252/publications.pdf Version: 2024-02-01

SIAN FLIADD

#	Article	IF	CITATIONS
1	Systematic genetic testing for recessively inherited monogenic diabetes: a cross-sectional study in paediatric diabetes clinics. Diabetologia, 2022, 65, 336-342.	2.9	12
2	Quantifying prediction of pathogenicity for within-codon concordance (PM5) using 7541 functional classifications of BRCA1 and MSH2 missense variants. Genetics in Medicine, 2022, 24, 552-563.	1.1	5
3	Syndromic Monogenic Diabetes Genes Should Be Tested in Patients With a Clinical Suspicion of Maturity-Onset Diabetes of the Young. Diabetes, 2022, 71, 530-537.	0.3	35
4	Improvements in Awareness and Testing Have Led to a Threefold Increase Over 10 Years in the Identification of Monogenic Diabetes in the U.K Diabetes Care, 2022, 45, 642-649.	4.3	17
5	Evaluation of Evidence for Pathogenicity Demonstrates That <i>BLK</i> , <i>KLF11</i> , and <i>PAX4</i> Should Not Be Included in Diagnostic Testing for MODY. Diabetes, 2022, 71, 1128-1136.	0.3	27
6	SavvyCNV: Genome-wide CNV calling from off-targetÂreads. PLoS Computational Biology, 2022, 18, e1009940.	1.5	18
7	THUMPD1 bi-allelic variants cause loss of tRNA acetylation and a syndromic neurodevelopmental disorder. American Journal of Human Genetics, 2022, 109, 587-600.	2.6	19
8	Congenital beta cell defects are not associated with markers of islet autoimmunity, even in the context of high genetic risk for type 1 diabetes. Diabetologia, 2022, , 1.	2.9	1
9	Refinements and considerations for trio whole-genome sequence analysis when investigating Mendelian diseases presenting in early childhood. Human Genetics and Genomics Advances, 2022, 3, 100113.	1.0	4
10	Combining evidence for and against pathogenicity for variants in cancer susceptibility genes: CanVIG-UK consensus recommendations. Journal of Medical Genetics, 2021, 58, 297-304.	1.5	28
11	Missense substitutions at a conserved 14-3-3 binding site in HDAC4 cause a novel intellectual disability syndrome. Human Genetics and Genomics Advances, 2021, 2, 100015.	1.0	6
12	Long-term Follow-up of Glycemic and Neurological Outcomes in an International Series of Patients With Sulfonylurea-Treated <i>ABCC8</i> Permanent Neonatal Diabetes. Diabetes Care, 2021, 44, 35-42.	4.3	24
13	Diagnostic RET genetic testing in 1,058 index patients: A UK centre perspective. Clinical Endocrinology, 2021, 95, 295-302.	1.2	3
14	Genotype and Phenotype Heterogeneity in Neonatal Diabetes: A Single Centre Experience in Turkey. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2021, 13, 80-87.	0.4	3
15	A hemizygous mutation in the FOXP3 gene (IPEX syndrome) resulting in recurrent X-linked fetal hydrops: a case report. BMC Medical Genomics, 2021, 14, 58.	0.7	1
16	Founder mutation in the PMM2 promotor causes hyperinsulinemic hypoglycaemia/polycystic kidney disease (HIPKD). Molecular Genetics & Genomic Medicine, 2021, , e1674.	0.6	2
17	Functional interpretation of ATAD3A variants in neuro-mitochondrial phenotypes. Genome Medicine, 2021, 13, 55.	3.6	16
18	Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene. Cell Reports, 2021, 35, 108981.	2.9	9

#	Article	IF	CITATIONS
19	Mutations in <scp><i>HID1</i></scp> Cause Syndromic Infantile Encephalopathy and Hypopituitarism. Annals of Neurology, 2021, 90, 143-158.	2.8	3
20	Bi-allelic variants in the ER quality-control mannosidase gene EDEM3 cause a congenital disorder of glycosylation. American Journal of Human Genetics, 2021, 108, 1342-1349.	2.6	9
21	Molecular Genetics, Clinical Characteristics, and Treatment Outcomes of KATP-Channel Neonatal Diabetes Mellitus in Vietnam National Children's Hospital. Frontiers in Endocrinology, 2021, 12, 727083.	1.5	4
22	Study of Acute Liver Failure in Children Using Next Generation Sequencing Technology. Journal of Pediatrics, 2021, 236, 124-130.	0.9	7
23	100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care — Preliminary Report. New England Journal of Medicine, 2021, 385, 1868-1880.	13.9	352
24	Lissencephaly-pachygyria spectrum in a North Indian boy with Wolcott-Rallison syndrome due to homozygous deletion of exon 1 in the EIF2AK3 gene. Pediatric Endocrinology, Diabetes and Metabolism, 2021, 27, 287-290.	0.3	1
25	Compound heterozygous Pkd1l1 variants in a family with two fetuses affected by heterotaxy and complex Chd. European Journal of Medical Genetics, 2020, 63, 103657.	0.7	12
26	Recurrent <i>TTN</i> metatranscriptâ€only c.39974–11T>G splice variant associated with autosomal recessive arthrogryposis multiplex congenita and myopathy. Human Mutation, 2020, 41, 403-411.	1.1	28
27	A novel autosomal recessive DEAF1 nonsense variant: expanding the clinical phenotype. Clinical Dysmorphology, 2020, 29, 114-117.	0.1	1
28	De Novo Mutations in <i>EIF2B1</i> Affecting eIF2 Signaling Cause Neonatal/Early-Onset Diabetes and Transient Hepatic Dysfunction. Diabetes, 2020, 69, 477-483.	0.3	29
29	Type 1 diabetes can present before the age of 6Âmonths and is characterised by autoimmunity and rapid loss of beta cells. Diabetologia, 2020, 63, 2605-2615.	2.9	24
30	Response to Comment on Misra et al. Homozygous Hypomorphic HNF1A Alleles Are a Novel Cause of Young-Onset Diabetes and Result in Sulfonylurea-Sensitive Diabetes. Diabetes Care 2020;43:909–912. Diabetes Care, 2020, 43, e155-e156.	4.3	0
31	Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation. American Journal of Human Genetics, 2020, 107, 670-682.	2.6	25
32	Cancer Variant Interpretation Group UK (CanVIG-UK): an exemplar national subspecialty multidisciplinary network. Journal of Medical Genetics, 2020, 57, 829-834.	1.5	30
33	Noninvasive Fetal Genotyping by Droplet Digital PCR to Identify Maternally Inherited Monogenic Diabetes Variants. Clinical Chemistry, 2020, 66, 958-965.	1.5	32
34	Using referral rates for genetic testing to determine the incidence of a rare disease: The minimal incidence of congenital hyperinsulinism in the UK is 1 in 28,389. PLoS ONE, 2020, 15, e0228417.	1.1	29
35	Update of variants identified in the pancreatic βâ€cell K _{ATP} channel genes <i>KCNJ11</i> and <i>ABCC8</i> in individuals with congenital hyperinsulinism and diabetes. Human Mutation, 2020, 41, 884-905.	1.1	90
36	Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genetics in Medicine, 2020, 22, 1005-1014.	1.1	99

#	Article	IF	CITATIONS
37	Absence of Islet Autoantibodies and Modestly Raised Glucose Values at Diabetes Diagnosis Should Lead to Testing for MODY: Lessons From a 5-Year Pediatric Swedish National Cohort Study. Diabetes Care, 2020, 43, 82-89.	4.3	68
38	A restricted spectrum of missense KMT2D variants cause a multiple malformations disorder distinct fromKabuki syndrome. Genetics in Medicine, 2020, 22, 867-877.	1.1	41
39	Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism. American Journal of Human Genetics, 2020, 106, 272-279.	2.6	33
40	Phenotype of a transient neonatal diabetes point mutation (SUR1-R1183W) in mice. Wellcome Open Research, 2020, 5, 15.	0.9	1
41	YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. Journal of Clinical Investigation, 2020, 130, 6338-6353.	3.9	58
42	Significant Benefits of <i>AIP</i> Testing and Clinical Screening in Familial Isolated and Young-onset Pituitary Tumors. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2247-e2260.	1.8	37
43	Homozygous Hypomorphic <i>HNF1A</i> Alleles Are a Novel Cause of Young-Onset Diabetes and Result in Sulfonylurea-Sensitive Diabetes. Diabetes Care, 2020, 43, 909-912.	4.3	13
44	Phenotype of a transient neonatal diabetes point mutation (SUR1-R1183W) in mice. Wellcome Open Research, 2020, 5, 15.	0.9	1
45	Title is missing!. , 2020, 15, e0228417.		0
46	Title is missing!. , 2020, 15, e0228417.		0
47	Title is missing!. , 2020, 15, e0228417.		0
48	Title is missing!. , 2020, 15, e0228417.		0
49	Congenital hyperinsulinism as the presenting feature of Kabuki syndrome: clinical and molecular characterization of 10 affected individuals. Genetics in Medicine, 2019, 21, 233-242.	1.1	39
50	The role of molecular genetics in the clinical management of sporadic medullary thyroid carcinoma: A systematic review. Clinical Endocrinology, 2019, 91, 697-707.	1.2	25
51	A hypomorphic allele of SLC35D1 results in Schneckenbecken-like dysplasia. Human Molecular Genetics, 2019, 28, 3543-3551.	1.4	9
52	HNF1B Mutations Are Associated With a Gitelman-like Tubulopathy That Develops During Childhood. Kidney International Reports, 2019, 4, 1304-1311.	0.4	39
53	A Specific CNOT1 Mutation Results in a Novel Syndrome of Pancreatic Agenesis and Holoprosencephaly through Impaired Pancreatic and Neurological Development. American Journal of Human Genetics, 2019, 104, 985-989.	2.6	43
54	Trisomy 21 Is a Cause of Permanent Neonatal Diabetes That Is Autoimmune but Not HLA Associated. Diabetes, 2019, 68, 1528-1535.	0.3	22

#	Article	IF	CITATIONS
55	CAKUT and Autonomic Dysfunction Caused by Acetylcholine Receptor Mutations. American Journal of Human Genetics, 2019, 105, 1286-1293.	2.6	18
56	Using Structural Analysis In Silico to Assess the Impact of Missense Variants in MEN1. Journal of the Endocrine Society, 2019, 3, 2258-2275.	0.1	14
57	NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses. Brain, 2019, 142, 50-58.	3.7	51
58	An Amish founder variant consolidates disruption of CEP55 as a cause of hydranencephaly and renal dysplasia. European Journal of Human Genetics, 2019, 27, 657-662.	1.4	24
59	Homozygosity mapping provides supporting evidence of pathogenicity in recessive Mendelian disease. Genetics in Medicine, 2019, 21, 982-986.	1.1	22
60	Focal Congenital Hyperinsulinism as a Cause for Sudden Infant Death. Pediatric and Developmental Pathology, 2019, 22, 65-69.	0.5	5
61	Prediction algorithms: pitfalls in interpreting genetic variants of autosomal dominant monogenic diabetes. Journal of Clinical Investigation, 2019, 130, 14-16.	3.9	27
62	Genomic variant sharing: a position statement. Wellcome Open Research, 2019, 4, 22.	0.9	31
63	Partial diazoxide responsiveness in a neonate with hyperinsulinism due to homozygous ABCC8 mutation. Endocrinology, Diabetes and Metabolism Case Reports, 2019, 2019, .	0.2	4
64	Congenital Hyperinsulinism and Evolution to Sulfonylurearesponsive Diabetes Later in Life due to a Novel Homozygous p.L171F <i>ABCC8</i> Mutation. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2019, 11, 82-87.	0.4	18
65	Refinement of the critical genomic region for hypoglycaemia in the Chromosome 9p deletion syndrome. Wellcome Open Research, 2019, 4, 149.	0.9	3
66	Refinement of the critical genomic region for congenital hyperinsulinismÂin the Chromosome 9p deletion syndrome. Wellcome Open Research, 2019, 4, 149.	0.9	5
67	Misannotation of multiple-nucleotide variants risks misdiagnosis. Wellcome Open Research, 2019, 4, 145.	0.9	1
68	Risk category system to identify pituitary adenoma patients with <i>AIP</i> mutations. Journal of Medical Genetics, 2018, 55, 254-260.	1.5	35
69	Congenital Titinopathy: Comprehensive characterization and pathogenic insights. Annals of Neurology, 2018, 83, 1105-1124.	2.8	93
70	Pharmacogenomics in diabetes: outcomes of thiamine therapy in TRMA syndrome. Diabetologia, 2018, 61, 1027-1036.	2.9	26
71	<i>MAFA</i> missense mutation causes familial insulinomatosis and diabetes mellitus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1027-1032.	3.3	88
72	A type 1 diabetes genetic risk score can discriminate monogenic autoimmunity with diabetes from early-onset clustering of polygenic autoimmunity with diabetes. Diabetologia, 2018, 61, 862-869.	2.9	33

#	Article	IF	CITATIONS
73	Comment on Dubois-Laforgue et al. Diabetes, Associated Clinical Spectrum, Long-term Prognosis, and Genotype/Phenotype Correlations in 201 Adult Patients With Hepatocyte Nuclear Factor 1B (<i>HNF1B</i>) Molecular Defects. Diabetes Care 2017;40:1436–1443. Diabetes Care, 2018, 41, e7-e7.	4.3	4
74	WNT Signaling Perturbations Underlie the Genetic Heterogeneity of Robinow Syndrome. American Journal of Human Genetics, 2018, 102, 27-43.	2.6	88
75	Genetic mutations associated with neonatal diabetes mellitus in Omani patients. Journal of Pediatric Endocrinology and Metabolism, 2018, 31, 195-204.	0.4	16
76	Emergence of insulin resistance following empirical glibenclamide therapy: a case report of neonatal diabetes with a recessive INS gene mutation. Journal of Pediatric Endocrinology and Metabolism, 2018, 31, 345-348.	0.4	8
77	Prevalence of diabetes in Australia: insights from the Fremantle Diabetes Study Phase II. Internal Medicine Journal, 2018, 48, 803-809.	0.5	46
78	Permanent neonatal diabetes mellitus and neurological abnormalities due to a novel homozygous missense mutation in <i>NEUROD1</i> . Pediatric Diabetes, 2018, 19, 898-904.	1.2	22
79	Diagnosis of lethal or prenatalâ€onset autosomal recessive disorders by parental exome sequencing. Prenatal Diagnosis, 2018, 38, 33-43.	1.1	64
80	Monogenic Diabetes Not Caused By Mutations in Mody Genes: A Very Heterogenous Group of Diabetes. Experimental and Clinical Endocrinology and Diabetes, 2018, 126, 612-618.	0.6	12
81	Marked intrafamilial variability of exocrine and endocrine pancreatic phenotypes due to a splice site mutation in GATA6. Biotechnology and Biotechnological Equipment, 2018, 32, 124-129.	0.5	0
82	A Novel KCNJ11 Mutation Associated with Transient Neonatal Diabetes. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2018, 10, 175-178.	0.4	9
83	Cover Image, Volume 176A, Number 9, September 2018. American Journal of Medical Genetics, Part A, 2018, 176, .	0.7	0
84	p.Val804Met, the Most Frequent Pathogenic Mutation in RET, Confers a Very Low Lifetime Risk of Medullary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4275-4282.	1.8	39
85	ICR142 Benchmarker: evaluating, optimising and benchmarking variant calling using the ICR142 NGS validation series. Wellcome Open Research, 2018, 3, 108.	0.9	0
86	Clinical Diversity in Focal Congenital Hyperinsulinism in Infancy Correlates With Histological Heterogeneity of Islet Cell Lesions. Frontiers in Endocrinology, 2018, 9, 619.	1.5	12
87	Response to Letter to the Editor: "p.Val804Met, the Most Frequent Pathogenic Mutation in RET, Confers a Very Low Lifetime Risk of Medullary Thyroid Cancerâ€# Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3518-3519.	1.8	3
88	PLIN1 Haploinsufficiency Is Not Associated With Lipodystrophy. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3225-3230.	1.8	19
89	ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatric Diabetes, 2018, 19, 47-63.	1.2	227
90	A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin. Diabetologia, 2018, 61, 2520-2527.	2.9	65

#	Article	IF	CITATIONS
91	Diazoxide toxicity in a child with persistent hyperinsulinemic hypoglycemia of infancy: mixed hyperglycemic hyperosmolar coma and ketoacidosis. Journal of Pediatric Endocrinology and Metabolism, 2018, 31, 943-945.	0.4	7
92	<i>TRPV6</i> compound heterozygous variants result in impaired placental calcium transport and severe undermineralization and dysplasia of the fetal skeleton. American Journal of Medical Genetics, Part A, 2018, 176, 1950-1955.	0.7	31
93	Comprehensive screening shows that mutations in the known syndromic genes are rare in infants presenting with hyperinsulinaemic hypoglycaemia. Clinical Endocrinology, 2018, 89, 621-627.	1.2	5
94	Exocrine pancreatic dysfunction is common in hepatocyte nuclear factor 1β-associated renal disease and can be symptomatic. CKJ: Clinical Kidney Journal, 2018, 11, 453-458.	1.4	10
95	Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study. Lancet Diabetes and Endocrinology,the, 2018, 6, 637-646.	5.5	120
96	The Common <i>HNF1A</i> Variant I27L Is a Modifier of Age at Diabetes Diagnosis in Individuals With HNF1A-MODY. Diabetes, 2018, 67, 1903-1907.	0.3	12
97	Neonatal Diabetes: Two Cases with Isolated Pancreas Agenesis due to Homozygous PTF1A Enhancer Mutations and One with Developmental Delay, Epilepsy, and Neonatal Diabetes Syndrome due to KCNJ11 Mutation. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2018, 10, 168-174.	0.4	19
98	Sirolimus-Induced Hepatitis in Two Patients with Hyperinsulinemic Hypoglycemia. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2018, 10, 279-283.	0.4	10
99	ICR142 Benchmarker: evaluating, optimising and benchmarking variant calling performance using the ICR142 NGS validation series. Wellcome Open Research, 2018, 3, 108.	0.9	0
100	Dominant ER Stress–Inducing <i>WFS1</i> Mutations Underlie a Genetic Syndrome of Neonatal/Infancy-Onset Diabetes, Congenital Sensorineural Deafness, and Congenital Cataracts. Diabetes, 2017, 66, 2044-2053.	0.3	77
101	Recessively Inherited <i>LRBA</i> Mutations Cause Autoimmunity Presenting as Neonatal Diabetes. Diabetes, 2017, 66, 2316-2322.	0.3	59
102	A successful transition to sulfonylurea treatment in male infant with neonatal diabetes caused by the novel abcc8 gene mutation and three years follow-up. Diabetes Research and Clinical Practice, 2017, 129, 59-61.	1.1	6
103	Atypical Forms of Congenital Hyperinsulinism in Infancy Are Associated With Mosaic Patterns of Immature Islet Cells. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3261-3267.	1.8	24
104	Clinical presentation and treatment response to diazoxide in two siblings with congenital hyperinsulinism as a result of a novel compound heterozygous ABCC8 missense mutation. Journal of Pediatric Endocrinology and Metabolism, 2017, 30, 471-474.	0.4	1
105	Polycystic Kidney Disease with Hyperinsulinemic Hypoglycemia Caused by a Promoter Mutation in Phosphomannomutase 2. Journal of the American Society of Nephrology: JASN, 2017, 28, 2529-2539.	3.0	99
106	Exome sequencing reveals a de novo POLD1 mutation causing phenotypic variability in mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome (MDPL). Metabolism: Clinical and Experimental, 2017, 71, 213-225.	1.5	43
107	Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nature Communications, 2017, 8, 888.	5.8	95
108	MODY in Ukraine: genes, clinical phenotypes and treatment. Journal of Pediatric Endocrinology and Metabolism, 2017, 30, 1095-1103.	0.4	7

#	Article	IF	CITATIONS
109	Analysis of large-scale sequencing cohorts does not support the role of variants in <i>UCP2</i> as a cause of hyperinsulinaemic hypoglycaemia. Human Mutation, 2017, 38, 1442-1444.	1.1	17
110	Screening for neonatal diabetes at day 5 of life using dried blood spot glucose measurement. Diabetologia, 2017, 60, 2168-2173.	2.9	12
111	In-frame seven amino-acid duplication in AIP arose over the last 3000 years, disrupts protein interaction and stability and is associated with gigantism. European Journal of Endocrinology, 2017, 177, 257-266.	1.9	12
112	Population-Based Assessment of a Biomarker-Based Screening Pathway to Aid Diagnosis of Monogenic Diabetes in Young-Onset Patients. Diabetes Care, 2017, 40, 1017-1025.	4.3	111
113	Clinical and molecular characterization of children with neonatal diabetes mellitus at a tertiary care center in northern India. Indian Pediatrics, 2017, 54, 467-471.	0.2	13
114	Case report: maternal mosaicism resulting in inheritance of a novel GATA6 mutation causing pancreatic agenesis and neonatal diabetes mellitus. Diagnostic Pathology, 2017, 12, 1.	0.9	33
115	Analysis of cellâ€free fetal <scp>DNA</scp> for nonâ€invasive prenatal diagnosis in a family with neonatal diabetes. Diabetic Medicine, 2017, 34, 582-585.	1.2	27
116	Increased Population Risk of <i>AIP</i> -Related Acromegaly and Gigantism in Ireland. Human Mutation, 2017, 38, 78-85.	1.1	25
117	The Clinical Course of Patients with Preschool Manifestation of Type 1 Diabetes Is Independent of the HLA DR-DQ Genotype. Genes, 2017, 8, 146.	1.0	9
118	The prevalence of monogenic diabetes in Australia: the Fremantle Diabetes Study Phase II. Medical Journal of Australia, 2017, 207, 344-347.	0.8	18
119	Fainting Fanconi syndrome clarified by proxy: a case report. BMC Nephrology, 2017, 18, 230.	0.8	12
120	Pancreatic Agenesis due to Compound Heterozygosity for a Novel Enhancer and Truncating Mutation in the PTF1A Gene. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2017, 9, 274-277.	0.4	23
121	An ABCC8 Nonsense Mutation Causing Neonatal Diabetes Through Altered Transcript Expression. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2017, 9, 260-264.	0.4	13
122	Clinical and Genetic Characteristics, Management and Long-Term Follow-Up of Turkish Patients with Congenital Hyperinsulinism. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2016, 8, 197-204.	0.4	4
123	<i><scp>GCK</scp></i> gene mutations are a common cause of childhoodâ€onset <scp>MODY</scp> (maturityâ€onset diabetes of the young) in Turkey. Clinical Endocrinology, 2016, 85, 393-399.	1.2	21
124	Chromosome 17q12 microdeletions but not intragenic HNF1B mutations link developmental kidney disease and psychiatric disorder. Kidney International, 2016, 90, 203-211.	2.6	64
125	<i><scp>SOS</scp>1</i> frameshift mutations cause pure mucosal neuroma syndrome, a clinical phenotype distinct from multiple endocrine neoplasia type 2B. Clinical Endocrinology, 2016, 84, 715-719.	1.2	11
126	South Asian individuals with diabetes who are referred for MODY testing in the UK have a lower mutation pick-up rate than white European people. Diabetologia, 2016, 59, 2262-2265.	2.9	28

#	Article	IF	CITATIONS
127	Pitfalls of haplotype phasing from amplicon-based long-read sequencing. Scientific Reports, 2016, 6, 21746.	1.6	62
128	Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes. Diabetologia, 2016, 59, 1162-1166.	2.9	68
129	AIP mutations in young patients with acromegaly and the Tampico Giant: the Mexican experience. Endocrine, 2016, 53, 402-411.	1.1	20
130	Type 1 Diabetes Genetic Risk Score: A Novel Tool to Discriminate Monogenic and Type 1 Diabetes. Diabetes, 2016, 65, 2094-2099.	0.3	146
131	Differential regulation of serum microRNA expression by HNF1β and HNF1α transcription factors. Diabetologia, 2016, 59, 1463-1473.	2.9	18
132	Neonatal diabetes caused by a homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensitivity markedly affect diabetes risk. Diabetologia, 2016, 59, 1430-1436.	2.9	25
133	Clinical and genetic features of Argentinian children with diabetes-onset before 12months of age: Successful transfer from insulin to oral sulfonylurea. Diabetes Research and Clinical Practice, 2016, 117, 104-110.	1.1	8
134	The Common p.R114W <i>HNF4A</i> Mutation Causes a Distinct Clinical Subtype of Monogenic Diabetes. Diabetes, 2016, 65, 3212-3217.	0.3	46
135	Diagnosis of monogenic diabetes: 10‥ear experience in a large multiâ€ethnic diabetes center. Journal of Diabetes Investigation, 2016, 7, 332-337.	1.1	21
136	Prematurity and Genetic Testing for Neonatal Diabetes. Pediatrics, 2016, 138, .	1.0	27
137	Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. Acta Neuropathologica Communications, 2016, 4, 56.	2.4	110
138	Prospective functional classification of all possible missense variants in PPARG. Nature Genetics, 2016, 48, 1570-1575.	9.4	210
139	Hyperinsulinemic hypoglycemia of infancy due to novel HADH mutation in two siblings. Indian Pediatrics, 2016, 53, 912-913.	0.2	6
140	Conservatively treated Congenital Hyperinsulinism (CHI) due to K-ATP channel gene mutations: reducing severity over time. Orphanet Journal of Rare Diseases, 2016, 11, 163.	1.2	42
141	Coexistence of Mosaic Uniparental Isodisomy and a <i>KCNJ11</i> Mutation Presenting as Diffuse Congenital Hyperinsulinism and Hemihypertrophy. Hormone Research in Paediatrics, 2016, 85, 421-425.	0.8	7
142	Genetic characteristics, clinical spectrum, and incidence of neonatal diabetes in the Emirate of AbuDhabi, United Arab Emirates. American Journal of Medical Genetics, Part A, 2016, 170, 602-609.	0.7	39
143	Systematic Population Screening, Using Biomarkers and Genetic Testing, Identifies 2.5% of the U.K. Pediatric Diabetes Population With Monogenic Diabetes. Diabetes Care, 2016, 39, 1879-1888.	4.3	172

144 Insights from Monogenic Diabetes. , 2016, , 223-240.

#	Article	IF	CITATIONS
145	Isolated Pancreatic Aplasia Due to a Hypomorphic <i>PTF1A</i> Mutation. Diabetes, 2016, 65, 2810-2815.	0.3	22
146	Somatic <i>GPR101</i> Duplication Causing X-Linked Acrogigantism (XLAG)—Diagnosis and Management. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1927-1930.	1.8	48
147	Characteristics of maturity onset diabetes of the young in a large diabetes center. Pediatric Diabetes, 2016, 17, 360-367.	1.2	44
148	Single patient in GCK-MODY family successfully re-diagnosed into GCK-PNDM through targeted next-generation sequencing technology. Acta Diabetologica, 2016, 53, 337-338.	1.2	3
149	A Novel Homozygous Mutation in the KCNJ11 Gene of a Neonate with Congenital Hyperinsulinism and Successful Management with Sirolimus. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2016, 8, 478-481.	0.4	17
150	A Case Report on Congenital Hyperinsulinism Associated with ABCC8 Nonsense Mutation: Good Response to Octreotide. Journal of the ASEAN Federation of Endocrine Societies, 2016, 31, 178-182.	0.1	0
151	The value of inÂvitro studies in a case of neonatal diabetes with a novel Kir6.2â€W68G mutation. Clinical Case Reports (discontinued), 2015, 3, 884-887.	0.2	4
152	Sirolimus therapy following subtotal pancreatectomy in neonatal hyperinsulinemic hypoglycaemia: a case report. International Journal of Pediatric Endocrinology (Springer), 2015, 2015, .	1.6	0
153	Alternating hypoglycemia and hyperglycemia in a toddler with a homozygous p.R1419H ABCC8 mutation: an unusual clinical picture. Journal of Pediatric Endocrinology and Metabolism, 2015, 28, 345-51.	0.4	10
154	SP030HNF1B WHOLE-GENE DELETIONS ARE ASSOCIATED WITH AUTISTIC TRAITS. Nephrology Dialysis Transplantation, 2015, 30, iii390-iii390.	0.4	0
155	Anemia in a Child with Deafness: Be Vigilant for a Rare Cause!. Indian Journal of Hematology and Blood Transfusion, 2015, 31, 394-395.	0.3	0
156	Most People With Long-Duration Type 1 Diabetes in a Large Population-Based Study Are Insulin Microsecretors. Diabetes Care, 2015, 38, 323-328.	4.3	104
157	Genome, Exome, and Targeted Next-Generation Sequencing in Neonatal Diabetes. Pediatric Clinics of North America, 2015, 62, 1037-1053.	0.9	16
158	Expanding the Clinical Spectrum Associated With <i>GLIS3</i> Mutations. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1362-E1369.	1.8	66
159	Variants in KCNJ11 and BAD do not predict response to ketogenic dietary therapies for epilepsy. Epilepsy Research, 2015, 118, 22-28.	0.8	6
160	Assessment of the HNF1B Score as a Tool to Select Patients for <i>HNF1B</i> Genetic Testing. Nephron, 2015, 130, 134-140.	0.9	15
161	Increased Plasma Incretin Concentrations Identifies a Subset of PatientsÂwith Persistent Congenital Hyperinsulinism without KATPÂChannelÂGene Defects. Journal of Pediatrics, 2015, 166, 191-194.	0.9	8
162	An exome sequencing strategy to diagnose lethal autosomal recessive disorders. European Journal of Human Genetics, 2015, 23, 401-404.	1.4	51

#	Article	IF	CITATIONS
163	Efficacy and safety of sirolimus in a neonate with persistent hypoglycaemia following near-total pancreatectomy for hyperinsulinaemic hypoglycaemia. Journal of Pediatric Endocrinology and Metabolism, 2015, 28, 1391-8.	0.4	15
164	The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet, The, 2015, 386, 957-963.	6.3	250
165	Recognition and Management of Individuals With Hyperglycemia Because of a Heterozygous Glucokinase Mutation. Diabetes Care, 2015, 38, 1383-1392.	4.3	217
166	A Deep Intronic HADH Splicing Mutation (c.636+471G>T) in a Congenital Hyperinsulinemic Hypoglycemia Case: Long Term Clinical Course. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2015, 7, 144-147.	0.4	13
167	Heterogeneous Genetic Background of the Association of Pheochromocytoma/Paraganglioma and Pituitary Adenoma: Results From a Large Patient Cohort. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E531-E541.	1.8	145
168	Variable Phenotype of Diabetes Mellitus in Siblings with a Homozygous <i>PTF1A</i> Enhancer Mutation. Hormone Research in Paediatrics, 2015, 84, 206-211.	0.8	15
169	Liver Disease and Other Comorbidities in Wolcott-Rallison Syndrome: Different Phenotype and Variable Associations in a Large Cohort. Hormone Research in Paediatrics, 2015, 83, 190-197.	0.8	30
170	Sirolimus therapy in a patient with severe hyperinsulinaemic hypoglycaemia due to a compound heterozygous ABCC8 gene mutation. Journal of Pediatric Endocrinology and Metabolism, 2015, 28, 695-9.	0.4	20
171	Clinical characteristics and molecular genetic analysis of 22 patients with neonatal diabetes from the South-Eastern region of Turkey: predominance of non-KATP channel mutations. European Journal of Endocrinology, 2015, 172, 697-705.	1.9	52
172	Genotype and phenotype correlations in Iranian patients with hyperinsulinaemic hypoglycaemia. BMC Research Notes, 2015, 8, 350.	0.6	10
173	Landscape of Familial Isolated and Young-Onset Pituitary Adenomas: Prospective Diagnosis in <i>AIP</i> Mutation Carriers. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1242-E1254.	1.8	144
174	Biallelic RFX6 mutations can cause childhood as well as neonatal onset diabetes mellitus. European Journal of Human Genetics, 2015, 23, 1744-1748.	1.4	34
175	Protein-induced hyperinsulinaemic hypoglycaemia due to a homozygous HADH mutation in three siblings of a Saudi family. Journal of Pediatric Endocrinology and Metabolism, 2015, 28, 1073-7.	0.4	19
176	Neonatal diabetes in Ukraine: incidence, genetics, clinical phenotype and treatment. Journal of Pediatric Endocrinology and Metabolism, 2015, 28, 1279-86.	0.4	34
177	HNF1B-associated renal and extra-renal disease—an expanding clinical spectrum. Nature Reviews Nephrology, 2015, 11, 102-112.	4.1	237
178	Pancreatic Endocrine and Exocrine Function in Children following Near-Total Pancreatectomy for Diffuse Congenital Hyperinsulinism. PLoS ONE, 2014, 9, e98054.	1.1	63
179	Chromosome 6q24 transient neonatal diabetes mellitus and protein sensitive hyperinsulinaemic hypoglycaemia. Journal of Pediatric Endocrinology and Metabolism, 2014, 27, 1065-9.	0.4	2
180	Neonatal diabetes in an infant of diabetic mother: same novel INS missense mutation in the mother and her offspring. Journal of Pediatric Endocrinology and Metabolism, 2014, 27, 745-8.	0.4	4

#	Article	IF	CITATIONS
181	Phenotypic severity of homozygous GCK mutations causing neonatal or childhood-onset diabetes is primarily mediated through effects on protein stability. Human Molecular Genetics, 2014, 23, 6432-6440.	1.4	41
182	Three cases of Wolfram syndrome with different clinical aspects. Journal of Pediatric Endocrinology and Metabolism, 2014, 28, 433-8.	0.4	4
183	The <i>HNF4A</i> R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype. Journal of Medical Genetics, 2014, 51, 165-169.	1.5	82
184	Next-Generation Sequencing for the Diagnosis of Monogenic Diabetes and Discovery of Novel Aetiologies. Frontiers in Diabetes, 2014, , 71-86.	0.4	2
185	Clinical and histological heterogeneity of congenital hyperinsulinism due to paternally inherited heterozygous ABCC8/KCNJ11 mutations. European Journal of Endocrinology, 2014, 171, 685-695.	1.9	36
186	A Combination of Nifedipine and Octreotide Treatment in an Hyperinsulinemic Hypoglycemic Infant. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2014, 6, 119-121.	0.4	18
187	<i>GATA4</i> Mutations Are a Cause of Neonatal and Childhood-Onset Diabetes. Diabetes, 2014, 63, 2888-2894.	0.3	108
188	The diagnosis and management of monogenic diabetes in children and adolescents. Pediatric Diabetes, 2014, 15, 47-64.	1.2	170
189	Permanent neonatal diabetes mellitus in Jordan. Journal of Pediatric Endocrinology and Metabolism, 2014, 27, 879-83.	0.4	13
190	Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia, 2014, 57, 54-56.	2.9	164
191	Primary hypothyroidism: an unusual manifestation of Wolcott–Rallison syndrome. European Journal of Pediatrics, 2014, 173, 1565-1568.	1.3	5
192	Clinical utility gene card for: Maturity-onset diabetes of the young. European Journal of Human Genetics, 2014, 22, 1153-1153.	1.4	26
193	Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nature Genetics, 2014, 46, 61-64.	9.4	255
194	Activating <i>AKT2</i> Mutation: Hypoinsulinemic Hypoketotic Hypoglycemia. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 391-394.	1.8	32
195	Clinical characteristics and phenotype–genotype analysis in Turkish patients with congenital hyperinsulinism; predominance of recessive KATP channel mutations. European Journal of Endocrinology, 2014, 170, 885-892.	1.9	17
196	Prevalence of Vascular Complications Among Patients With Glucokinase Mutations and Prolonged, Mild Hyperglycemia. JAMA - Journal of the American Medical Association, 2014, 311, 279.	3.8	257
197	Permanent neonatal diabetes in siblings with novel C109YINSmutation transmitted by an unaffected parent with somatic mosaicism. Pediatric Diabetes, 2014, 15, 324-328.	1.2	7
198	The 0.1% of the Population With Glucokinase Monogenic Diabetes Can Be Recognized by Clinical Characteristics in Pregnancy: The Atlantic Diabetes in Pregnancy Cohort. Diabetes Care, 2014, 37, 1230-1236.	4.3	122

#	Article	IF	CITATIONS
199	Neurogenin 3 is important but not essential for pancreatic islet development in humans. Diabetologia, 2014, 57, 2421-2424.	2.9	27
200	Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nature Genetics, 2014, 46, 812-814.	9.4	411
201	Permanent neonatal diabetes misdiagnosed as type 1 diabetes in a 28-year-old female: A life-changing diagnosis. Diabetes Research and Clinical Practice, 2014, 106, e22-e24.	1.1	1
202	Sirolimus Therapy in Infants with Severe Hyperinsulinemic Hypoglycemia. New England Journal of Medicine, 2014, 370, 1131-1137.	13.9	116
203	Fanconi-Bickel Syndrome - Mutation in SLC2A2 Gene. Indian Journal of Pediatrics, 2014, 81, 1237-1239.	0.3	17
204	Ten years of the national genetic diabetes nurse network: a model for the translation of genetic information into clinical care. Clinical Medicine, 2014, 14, 117-121.	0.8	16
205	Analysis of Transcription Factors Key for Mouse Pancreatic Development Establishes NKX2-2 and MNX1 Mutations as Causes of Neonatal Diabetes in Man. Cell Metabolism, 2014, 19, 146-154.	7.2	123
206	Reclassification of Diabetes Etiology in a Family With Multiple Diabetes Phenotypes. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1067-E1071.	1.8	5
207	Long-Term Follow-Up of Children With Congenital Hyperinsulinism on Octreotide Therapy. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 3660-3667.	1.8	53
208	Next generation sequencing of chromosomal rearrangements in patients with split-hand/split-foot malformation provides evidence for <i>DYNC111</i> exonic enhancers of <i>DLX5/6</i> expression in humans. Journal of Medical Genetics, 2014, 51, 264-267.	1.5	43
209	Permanent neonatal diabetes mellitus due to an ABCC8 mutation: a case report. JOP: Journal of the Pancreas, 2014, 15, 198-200.	1.5	4
210	Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia, 2013, 56, 1958-1963.	2.9	248
211	Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype–phenotype correlation in an international cohort of patients. Diabetologia, 2013, 56, 758-762.	2.9	113
212	Hypoglycaemia following diabetes remission in patients with 6q24 methylation defects: expanding the clinical phenotype. Diabetologia, 2013, 56, 218-221.	2.9	24
213	Identification of a SLC19A2 nonsense mutation in Persian families with thiamine-responsive megaloblastic anemia. Gene, 2013, 519, 295-297.	1.0	23
214	Prevalence, Characteristics and Clinical Diagnosis of Maturity Onset Diabetes of the Young Due to Mutations in HNF1A, HNF4A, and Glucokinase: Results From the SEARCH for Diabetes in Youth. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4055-4062.	1.8	310
215	Maturity onset diabetes of the young: identification and diagnosis. Annals of Clinical Biochemistry, 2013, 50, 403-415.	0.8	131
216	A novel GATA6 mutation leading to congenital heart defects and permanent neonatal diabetes: A case report. Diabetes and Metabolism, 2013, 39, 370-374.	1.4	20

#	Article	IF	CITATIONS
217	Permanent neonatal diabetes due to a novel L105P (c.314T>C; p.Leu105Pro) heterozygous mutation in insulin gene. International Journal of Diabetes in Developing Countries, 2013, 33, 226-228.	0.3	1
218	Digenic heterozygous <i>HNF1A</i> and <i>HNF4A</i> mutations in two siblings with childhood-onset diabetes. Pediatric Diabetes, 2013, 14, 535-538.	1.2	12
219	Mutation of <i>HES7</i> in a large extended family with spondylocostal dysostosis and dextrocardia with <i>situs inversus</i> . American Journal of Medical Genetics, Part A, 2013, 161, 2244-2249.	0.7	34
220	Mutations in the Genes Encoding the Transcription Factors Hepatocyte Nuclear Factor 1 Alpha and 4 Alpha in Maturity-Onset Diabetes of the Young and Hyperinsulinemic Hypoglycemia. Human Mutation, 2013, 34, 669-685.	1.1	182
221	Permanent neonatal diabetes caused by a novel mutation in the INS gene. Diabetes Research and Clinical Practice, 2013, 99, e5-e8.	1.1	4
222	<i>HNF1B</i> deletions in patients with youngâ€onset diabetes but no known renal disease. Diabetic Medicine, 2013, 30, 114-117.	1.2	34
223	An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nature Genetics, 2013, 45, 947-950.	9.4	151
224	Next-Generation Sequencing Reveals Deep Intronic Cryptic ABCC8 and HADH Splicing Founder Mutations Causing Hyperinsulinism by Pseudoexon Activation. American Journal of Human Genetics, 2013, 92, 131-136.	2.6	76
225	Hepatoblastoma in a child with a paternally-inherited ABCC8 mutation and mosaic paternal uniparental disomy 11p causing focal congenital hyperinsulinism. European Journal of Medical Genetics, 2013, 56, 114-117.	0.7	19
226	Clinical and molecular characterisation of hyperinsulinaemic hypoglycaemia in infants born small-for-gestational age. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2013, 98, F356-F358.	1.4	44
227	Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. European Journal of Endocrinology, 2013, 168, 557-564.	1.9	190
228	<i>GATA6</i> Mutations Cause a Broad Phenotypic Spectrum of Diabetes From Pancreatic Agenesis to Adult-Onset Diabetes Without Exocrine Insufficiency. Diabetes, 2013, 62, 993-997.	0.3	128
229	Comment on: Khurana et al. The Diagnosis of Neonatal Diabetes in a Mother at 25 Years of Age. Diabetes Care 2012;35:e59. Diabetes Care, 2013, 36, e31-e31.	4.3	3
230	tRNA Methyltransferase Homolog Gene TRMT10A Mutation in Young Onset Diabetes and Primary Microcephaly in Humans. PLoS Genetics, 2013, 9, e1003888.	1.5	103
231	A Comparison of Methods for EGFR Mutation Testing in Non–Small Cell Lung Cancer. Diagnostic Molecular Pathology, 2013, 22, 190-195.	2.1	27
232	Diabetes Mellitus in Neonates and Infants: Genetic Heterogeneity, Clinical Approach to Diagnosis, and Therapeutic Options. Hormone Research in Paediatrics, 2013, 80, 137-146.	0.8	87
233	Biallelic <i>PDX1</i> (insulin promoter factorÂ1) mutations causing neonatal diabetes without exocrine pancreatic insufficiency. Diabetic Medicine, 2013, 30, e197-200.	1.2	46
234	Thiamine responsive megaloblastic anemia: a novel <i>SLC19A2</i> compound heterozygous mutation in two siblings. Pediatric Diabetes, 2013, 14, 384-387.	1.2	25

#	Article	IF	CITATIONS
235	Variable phenotype in five patients with Wolcott-Rallison syndrome due to the same EIF2AK3 (c.1259delA) mutation. Journal of Pediatric Endocrinology and Metabolism, 2013, 26, 757-60.	0.4	11
236	Genetic sequencing breakthrough to aid treatment for congenital hyperinsulinism. British Journal of Hospital Medicine (London, England: 2005), 2013, 74, 68-68.	0.2	0
237	Thiamine responsive megaloblastic anemia with a novel SLC19A2 mutation presenting with myeloid maturational arrest. Pediatric Blood and Cancer, 2013, 60, 1242-1243.	0.8	7
238	Prematurity, macrosomia, hyperinsulinaemic hypoglycaemia and a dominant ABCC8 gene mutation. BMJ Case Reports, 2013, 2013, bcr2013008767-bcr2013008767.	0.2	6
239	Use of HbA1c in the Identification of Patients with Hyperglycaemia Caused by a Glucokinase Mutation: Observational Case Control Studies. PLoS ONE, 2013, 8, e65326.	1.1	101
240	Wolcott-Rallison Syndrome Due to a Novel Mutation (R491X) in EIF2AK3 Gene. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2012, 4, 101-103.	0.4	10
241	The association of cardiac ventricular hypertrophy with congenital hyperinsulinism. European Journal of Endocrinology, 2012, 167, 619-624.	1.9	7
242	Amino acid properties may be useful in predicting clinical outcome in patients with Kir6.2 neonatal diabetes. European Journal of Endocrinology, 2012, 167, 417-421.	1.9	4
243	Alagille syndrome: pathogenesis, diagnosis and management. European Journal of Human Genetics, 2012, 20, 251-257.	1.4	319
244	The Heterogeneity of Focal Forms of Congenital Hyperinsulinism. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E94-E99.	1.8	26
245	Permanent neonatal diabetes mellitus: prevalence and genetic diagnosis in the SEARCH for Diabetes in Youth Study. Pediatric Diabetes, 2012, 14, n/a-n/a.	1.2	54
246	Permanent neonatal diabetes: different aetiology in Arabs compared to Europeans. Archives of Disease in Childhood, 2012, 97, 721-723.	1.0	40
247	Antenatal Diagnosis of Fetal Genotype Determines if Maternal Hyperglycemia Due to a Glucokinase Mutation Requires Treatment. Diabetes Care, 2012, 35, 1832-1834.	4.3	50
248	Permanent neonatal diabetes mellitus due to KCNJ11 mutation in a Portuguese family: transition from insulin to oral sulfonylureas. Journal of Pediatric Endocrinology and Metabolism, 2012, 25, 367-70.	0.4	17
249	Variability in the age at diagnosis of diabetes in two unrelated patients with a homozygous glucokinase gene mutation. Journal of Pediatric Endocrinology and Metabolism, 2012, 25, 805-8.	0.4	8
250	Insights Into the Pathogenicity of Rare Missense <i>GCK</i> Variants From the Identification and Functional Characterization of Compound Heterozygous and Double Mutations Inherited in <i>Cis</i> . Diabetes Care, 2012, 35, 1482-1484.	4.3	15
251	Many patients have an identifiable genetic cause of Hirschsprung's disease. BMJ, The, 2012, 345, e8199-e8199.	3.0	2
252	Systematic Assessment of Etiology in Adults With a Clinical Diagnosis of Young-Onset Type 2 Diabetes Is a Successful Strategy for Identifying Maturity-Onset Diabetes of the Young. Diabetes Care, 2012, 35, 1206-1212.	4.3	153

#	Article	IF	CITATIONS
253	GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nature Genetics, 2012, 44, 20-22.	9.4	249
254	SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion. Diabetologia, 2012, 55, 2381-2385.	2.9	113
255	Childhood presentation of <i>COL4A1</i> mutations. Developmental Medicine and Child Neurology, 2012, 54, 569-574.	1.1	61
256	Clinical and molecular basis of transient neonatal diabetes mellitus in Brazilian children. Diabetes Research and Clinical Practice, 2012, 97, e41-e44.	1.1	5
257	Lipoprotein composition in HNF1A-MODY: Differentiating between HNF1A-MODY and Type 2 diabetes. Clinica Chimica Acta, 2012, 413, 927-932.	O.5	39
258	Leucine-sensitive hyperinsulinaemic hypoglycaemia in patients with loss of function mutations in 3-Hydroxyacyl-CoA Dehydrogenase. Orphanet Journal of Rare Diseases, 2012, 7, 25.	1.2	41
259	Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1. European Journal of Medical Genetics, 2012, 55, 620-624.	0.7	17
260	Genetic studies in a coexistence of acromegaly, pheochromocytoma, gastrointestinal stromal tumor (GIST) and thyroid follicular adenoma. Arquivos Brasileiros De Endocrinologia E Metabologia, 2012, 56, 507-512.	1.3	17
261	Permanent Neonatal Diabetes Caused by a Novel Mutation. Indian Pediatrics, 2012, 49, 486-488.	0.2	8
262	The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia, 2012, 55, 1265-1272.	2.9	238
263	Congenital hyperinsulinism: marked clinical heterogeneity in siblings with identical mutations in the <i>ABCC8</i> gene. Clinical Endocrinology, 2012, 76, 312-313.	1.2	8
264	Early-onset, severe lipoatrophy in a patient with permanent neonatal diabetes mellitus secondary to a recessive mutation in the INS gene. Pediatric Diabetes, 2012, 13, e26-e29.	1.2	3
265	KATP channel mutations in infants with permanent diabetes diagnosed after 6 months of life. Pediatric Diabetes, 2012, 13, 322-325.	1.2	57
266	Incidence, genetics, and clinical phenotype of permanent neonatal diabetes mellitus in northwest Saudi Arabia. Pediatric Diabetes, 2012, 13, 499-505.	1.2	84
267	Recessive SLC19A2 mutations are a cause ofÂneonatal diabetes mellitus inÂthiamine-responsive megaloblastic anaemia. Pediatric Diabetes, 2012, 13, 314-321.	1.2	57
268	Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia, 2012, 55, 123-127.	2.9	141
269	Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatric Nephrology, 2012, 27, 581-588.	0.9	71
270	GeneScreen: a program for high-throughput mutation detection in DNA sequence electropherograms. Journal of Medical Genetics, 2011, 48, 123-130.	1.5	20

#	Article	IF	CITATIONS
271	Urinary C-Peptide Creatinine Ratio Is a Practical Outpatient Tool for Identifying Hepatocyte Nuclear Factor 1-î±/Hepatocyte Nuclear Factor 4-î± Maturity-Onset Diabetes of the Young From Long-Duration Type 1 Diabetes. Diabetes Care, 2011, 34, 286-291.	4.3	123
272	Clinical characteristics of recessive and dominant congenital hyperinsulinism due to mutation(s) in the ABCC8/KCNJ11 genes encoding the ATP-sensitive potasium channel in the pancreatic beta cell. Journal of Pediatric Endocrinology and Metabolism, 2011, 24, 1019-23.	0.4	17
273	Permanent Neonatal Diabetes and Enteric Anendocrinosis Associated With Biallelic Mutations in <i>NEUROG3</i> . Diabetes, 2011, 60, 1349-1353.	0.3	138
274	A pathway to insulin independence in newborns and infants with diabetes. Journal of Perinatology, 2011, 31, 567-570.	0.9	1
275	Cushing Syndrome Secondary to A Thymic Carcinoid Tumor Due to Multiple Endocrine Neoplasia Type 1. Endocrine Practice, 2011, 17, e92-e96.	1.1	26
276	High-Sensitivity CRP Discriminates HNF1A-MODY From Other Subtypes of Diabetes. Diabetes Care, 2011, 34, 1860-1862.	4.3	90
277	Paternal Uniparental Isodisomy of Chromosome 11p15.5 within the Pancreas Causes Isolated Hyperinsulinemic Hypoglycemia. Frontiers in Endocrinology, 2011, 2, 66.	1.5	10
278	Characterization of ABCC8 and KCNJ11 gene mutations and phenotypes in Korean patients with congenital hyperinsulinism. European Journal of Endocrinology, 2011, 165, 485-486.	1.9	1
279	Persistently autoantibody negative (PAN) type 1 diabetes mellitus in children. Pediatric Diabetes, 2011, 12, 142-149.	1.2	51
280	KCNJ11 activating mutations cause both transient and permanent neonatal diabetes mellitus in Cypriot patients. Pediatric Diabetes, 2011, 12, 133-137.	1.2	5
281	Sequencing <i>PDX1</i> (insulin promoter factor 1) in 1788 UK individuals found 5% had a low frequency coding variant, but these variants are not associated with Type 2 diabetes. Diabetic Medicine, 2011, 28, 681-684.	1.2	11
282	Islet autoantibodies can discriminate maturityâ€onset diabetes of the young (MODY) from Type 1 diabetes. Diabetic Medicine, 2011, 28, 1028-1033.	1.2	173
283	A conserved tryptophan at the membrane–water interface acts as a gatekeeper for Kir6.2/SUR1 channels and causes neonatal diabetes when mutated. Journal of Physiology, 2011, 589, 3071-3083.	1.3	19
284	Exome Sequencing Identifies a DYNC1H1 Mutation in a Large Pedigree with Dominant Axonal Charcot-Marie-Tooth Disease. American Journal of Human Genetics, 2011, 89, 308-312.	2.6	233
285	The previously reported T342P GCK missense variant is not a pathogenic mutation causing MODY. Diabetologia, 2011, 54, 2202-2205.	2.9	15
286	Case Reports. Indian Pediatrics, 2011, 48, 727-736.	0.2	15
287	Clinical characterization of a newly described neonatal diabetes syndrome caused by <i>RFX6</i> mutations. American Journal of Medical Genetics, Part A, 2011, 155, 2821-2825.	0.7	39
288	Genome-Wide Homozygosity Analysis Reveals <i>HADH</i> Mutations as a Common Cause of Diazoxide-Responsive Hyperinsulinemic-Hypoglycemia in Consanguineous Pedigrees. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E498-E502.	1.8	51

#	Article	IF	CITATIONS
289	Galactokinase Deficiency in a Patient with Congenital Hyperinsulinism. JIMD Reports, 2011, 5, 7-11.	0.7	3
290	Novel GLIS3 mutations demonstrate an extended multisystem phenotype. European Journal of Endocrinology, 2011, 164, 437-443.	1.9	86
291	<i>AIP</i> Mutation in Pituitary Adenomas in the 18th Century and Today. New England Journal of Medicine, 2011, 364, 43-50.	13.9	151
292	Characterization of ABCC8 and KCNJ11 gene mutations and phenotypes in Korean patients with congenital hyperinsulinism. European Journal of Endocrinology, 2011, 164, 919-926.	1.9	28
293	In Vitro Recovery of ATP-Sensitive Potassium Channels in Â-Cells From Patients With Congenital Hyperinsulinism of Infancy. Diabetes, 2011, 60, 1223-1228.	0.3	17
294	Mutations of the Same Conserved Glutamate Residue in NBD2 of the Sulfonylurea Receptor 1 Subunit of the KATP Channel Can Result in Either Hyperinsulinism or Neonatal Diabetes. Diabetes, 2011, 60, 1813-1822.	0.3	25
295	Discovery of a Novel Site Regulating Glucokinase Activity following Characterization of a New Mutation Causing Hyperinsulinemic Hypoglycemia in Humans. Journal of Biological Chemistry, 2011, 286, 19118-19126.	1.6	21
296	Biochemical evaluation of an infant with hypoglycemia resulting from a novel de novo mutation of the GLUD1 gene and hyperinsulinism-hyperammonemia syndrome. Journal of Pediatric Endocrinology and Metabolism, 2011, 24, 573-7.	0.4	4
297	Transient neonatal diabetes with two novel mutations in the KCNJ11 gene and response to sulfonylurea treatment in a preterm infant. Journal of Pediatric Endocrinology and Metabolism, 2011, 24, 1077-80.	0.4	15
298	Familial Focal Congenital Hyperinsulinism. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 24-28.	1.8	31
299	Congenital hyperinsulinism caused by mutations in ABCC8 (SUR1) gene. Indian Pediatrics, 2011, 48, 733-4.	0.2	2
300	Maturity-onset diabetes of the young (MODY): how many cases are we missing?. Diabetologia, 2010, 53, 2504-2508.	2.9	560
301	Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes. Human Genetics, 2010, 127, 55-64.	1.8	61
302	The Renal Cysts and Diabetes (RCAD) Syndrome in a Child with Deletion of the Hepatocyte Nuclear Factor-1β Gene. Indian Journal of Pediatrics, 2010, 77, 1429-1431.	0.3	5
303	Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11. Reviews in Endocrine and Metabolic Disorders, 2010, 11, 193-198.	2.6	73
304	Mutations in the hepatocyte nuclear factor-1β (HNF1B) gene are common with combined uterine and renal malformations but are not found with isolated uterine malformations. American Journal of Obstetrics and Gynecology, 2010, 203, 364.e1-364.e5.	0.7	49
305	Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families. Human Mutation, 2010, 31, 950-960.	1.1	154
306	Autosomal dominant spondylocostal dysostosis in three generations of a Macedonian family: Negative mutation analysis of <i>DLL3</i> , <i>MESP2</i> , <i>HES7</i> , and <i>LFNG</i> . American Journal of Medical Genetics, Part A, 2010, 152A, 1378-1382.	0.7	17

#	Article	IF	CITATIONS
307	Increased all ause and cardiovascular mortality in monogenic diabetes as a result of mutations in the HNF1A gene. Diabetic Medicine, 2010, 27, 157-161.	1.2	96
308	Entities and frequency of neonatal diabetes: data from the diabetes documentation and quality management system (DPV). Diabetic Medicine, 2010, 27, 709-712.	1.2	84
309	Incidence of neonatal diabetes in Austria-calculation based on the Austrian Diabetes Register. Pediatric Diabetes, 2010, 11, 18-23.	1.2	52
310	Genetic Testing in Diabetes Mellitus. , 2010, , 17-25.		3
311	Interaction between mutations in the slide helix of Kir6.2 associated with neonatal diabetes and neurological symptoms. Human Molecular Genetics, 2010, 19, 963-972.	1.4	15
312	Recessive mutations in the <i>INS</i> gene result in neonatal diabetes through reduced insulin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3105-3110.	3.3	185
313	Congenital Hyperinsulinism due to a Compound Heterozygous <i>ABCC8 </i> Mutation with Spontaneous Resolution at Eight Weeks. Hormone Research in Paediatrics, 2010, 73, 287-292.	0.8	23
314	Focal congenital hyperinsulinism in a patient with septo-optic dysplasia. Nature Reviews Endocrinology, 2010, 6, 646-650.	4.3	5
315	Polygenic Risk Variants for Type 2 Diabetes Susceptibility Modify Age at Diagnosis in Monogenic <i>HNF1A</i> Diabetes. Diabetes, 2010, 59, 266-271.	0.3	37
316	Homozygous Mutations in <i>NEUROD1</i> Are Responsible for a Novel Syndrome of Permanent Neonatal Diabetes and Neurological Abnormalities. Diabetes, 2010, 59, 2326-2331.	0.3	143
317	In vitro expression of NGN3 identifies RAB3B as the predominant Ras-associated GTP-binding protein 3 family member in human islets. Journal of Endocrinology, 2010, 207, 151-161.	1.2	22
318	Using SIFT and PolyPhen to Predict Loss-of-Function and Gain-of-Function Mutations. Genetic Testing and Molecular Biomarkers, 2010, 14, 533-537.	0.3	330
319	Sequencing of candidate genes selected by beta cell experts in monogenic diabetes of unknown aetiology. JOP: Journal of the Pancreas, 2010, 11, 14-7.	1.5	8
320	An In-Frame Deletion in Kir6.2 (KCNJ11) Causing Neonatal Diabetes Reveals a Site of Interaction between Kir6.2 and SUR1. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2551-2557.	1.8	16
321	Spondylocostal Dysostosis Associated with Methylmalonic Aciduria. Genetic Testing and Molecular Biomarkers, 2009, 13, 181-183.	0.3	1
322	Hyperinsulinism–hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype–phenotype correlations. European Journal of Endocrinology, 2009, 161, 731-735.	1.9	81
323	Semi-Automated Unidirectional Sequence Analysis for Mutation Detection in a Clinical Diagnostic Setting. Genetic Testing and Molecular Biomarkers, 2009, 13, 381-386.	0.3	17
324	3-Hydroxyacyl-Coenzyme A Dehydrogenase Deficiency and Hyperinsulinemic Hypoglycemia: Characterization of a Novel Mutation and Severe Dietary Protein Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2221-2225.	1.8	72

#	Article	IF	CITATIONS
325	RET gene mutations are not a common cause of congenital solitary functioning kidney in adults. CKJ: Clinical Kidney Journal, 2009, 2, 183-184.	1.4	0
326	Severe Insulin Resistance and Intrauterine Growth Deficiency Associated With Haploinsufficiency forINSRandCHN2. Diabetes, 2009, 58, 2954-2961.	0.3	23
327	Wolcott-Rallison Syndrome Is the Most Common Genetic Cause of Permanent Neonatal Diabetes in Consanguineous Families. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4162-4170.	1.8	127
328	Identification of a Novel β-Cell Glucokinase (<i>GCK</i>) Promoter Mutation (â^'71G>C) That Modulates <i>GCK</i> Gene Expression Through Loss of Allele-Specific Sp1 Binding Causing Mild Fasting Hyperglycemia in Humans. Diabetes, 2009, 58, 1929-1935.	0.3	34
329	Update of mutations in the genes encoding the pancreatic beta-cell K _{ATP} channel subunits Kir6.2 (<i>KCNJ11</i>) and sulfonylurea receptor 1 (<i>ABCC8</i>) in diabetes mellitus and hyperinsulinism. Human Mutation, 2009, 30, 170-180.	1.1	209
330	Update on mutations in glucokinase (<i>GCK</i>), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Human Mutation, 2009, 30, 1512-1526.	1.1	403
331	Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes and hyperinsulinism. EMBO Molecular Medicine, 2009, 1, 166-177.	3.3	36
332	Referral rates for diagnostic testing support an incidence of permanent neonatal diabetes in three European countries of at least 1 in 260,000 live births. Diabetologia, 2009, 52, 1683-1685.	2.9	120
333	Germline mutations in the <i>CDKN1B</i> gene encoding p27 ^{<i>Kip1</i>} are a rare cause of multiple endocrine neoplasia type 1. Clinical Endocrinology, 2009, 70, 499-500.	1.2	20
334	Mutations in the <i>ABCC8</i> (SUR1 subunit of the K _{ATP} channel) gene are associated with a variable clinical phenotype. Clinical Endocrinology, 2009, 71, 358-362.	1.2	35
335	Pregnancy outcome in patients with raised blood glucose due to a heterozygous glucokinase gene mutation. Diabetic Medicine, 2009, 26, 14-18.	1.2	108
336	A genetic diagnosis of <i>HNF1A</i> diabetes alters treatment and improves glycaemic control in the majority of insulinâ€ŧreated patients. Diabetic Medicine, 2009, 26, 437-441.	1.2	205
337	Neonatal hyperinsulinaemic hypoglycaemia and monogenic diabetes due to a heterozygous mutation of the <i>HNF4A </i> gene. Australian and New Zealand Journal of Obstetrics and Gynaecology, 2009, 49, 328-330.	0.4	17
338	HNF1B Mutations Associate with Hypomagnesemia and Renal Magnesium Wasting. Journal of the American Society of Nephrology: JASN, 2009, 20, 1123-1131.	3.0	234
339	Evaluation of 13q14 Status in Patients with Chronic Lymphocytic Leukemia Using Single Nucleotide Polymorphism-Based Techniques. Journal of Molecular Diagnostics, 2009, 11, 298-305.	1.2	4
340	Evaluation of 13q14 Status in Multiple Myeloma by Digital Single Nucleotide Polymorphism Technology. Journal of Molecular Diagnostics, 2009, 11, 450-457.	1.2	2
341	Clinical Heterogeneity in Patients With <i>FOXP3</i> Mutations Presenting With Permanent Neonatal Diabetes. Diabetes Care, 2009, 32, 111-116.	4.3	104
342	Concordance of assays designed for the quantification of JAK2V617F: a multicenter study. Haematologica, 2009, 94, 38-45.	1.7	82

#	Article	IF	CITATIONS
343	A Kir6.2 mutation causing severe functional effects in vitro produces neonatal diabetes without the expected neurological complications. Diabetologia, 2008, 51, 802-810.	2.9	29
344	Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia, 2008, 51, 546-553.	2.9	376
345	A family with a novel TSH receptor activating germline mutation (p.Ala485Val). European Journal of Pediatrics, 2008, 167, 1231-1237.	1.3	30
346	Prenatal testing for a novelEBP missense mutation causing X-linked dominant chondrodysplasia punctata. Prenatal Diagnosis, 2008, 28, 384-388.	1.1	7
347	A further example of a distinctive autosomal recessive syndrome comprising neonatal diabetes mellitus, intestinal atresias and gall bladder agenesis. American Journal of Medical Genetics, Part A, 2008, 146A, 1713-1717.	0.7	38
348	Extreme phenotypic diversity and nonpenetrance in families with the <i>LMNA</i> gene mutation R644C. American Journal of Medical Genetics, Part A, 2008, 146A, 1530-1542.	0.7	100
349	Successful discontinuation of insulin treatment after gestational diabetes is shown to be a case of MODY due to a glucokinase mutation. Open Medicine (Poland), 2008, 3, 225-228.	0.6	2
350	Mutations in the MESP2 Gene Cause Spondylothoracic Dysostosis/Jarcho-Levin Syndrome. American Journal of Human Genetics, 2008, 82, 1334-1341.	2.6	79
351	Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nature Genetics, 2008, 40, 949-951.	9.4	460
352	Analysis of gross deletions in the <i>MEN1</i> gene in patients with multiple endocrine neoplasia typeÂ1. Clinical Endocrinology, 2008, 68, 350-354.	1.2	37
353	Permanent Neonatal Diabetes Mellitus Caused by a Novel Homozygous (T168A) Glucokinase (GCK) Mutation: Initial Response to Oral Sulphonylurea Therapy. Journal of Pediatrics, 2008, 153, 122-126.	0.9	46
354	Clinical implications of a molecular genetic classification of monogenic β-cell diabetes. Nature Clinical Practice Endocrinology and Metabolism, 2008, 4, 200-213.	2.9	439
355	Gene duplications resulting in over expression of glucokinase are not a common cause of hypoglycaemia of infancy in humans. Molecular Genetics and Metabolism, 2008, 94, 268-269.	0.5	3
356	Mutations in the Glucokinase Gene of the Fetus Result in Reduced Placental Weight. Diabetes Care, 2008, 31, 753-757.	4.3	30
357	DWP6-4 Novel hepatocyte nuclear factor 4-alpha (HNF4A) promoter mutation in a New Zealand family. Diabetes Research and Clinical Practice, 2008, 79, S30.	1.1	1
358	Transcription factor HNF1Î ² and novel partners affect nephrogenesis. Kidney International, 2008, 74, 210-217.	2.6	26
359	Effective Treatment With Oral Sulfonylureas in Patients With Diabetes Due to Sulfonylurea Receptor 1 (SUR1) Mutations. Diabetes Care, 2008, 31, 204-209.	4.3	239
360	Activating glucokinase (GCK) mutations as a cause of medically responsive congenital hyperinsulinism: prevalence in children and characterisation of a novel GCK mutation European Journal of Endocrinology, 2008, 159, 27-34.	1.9	97

#	Article	IF	CITATIONS
361	Mosaic Paternal Uniparental Isodisomy and an ABCC8 Gene Mutation in a Patient With Permanent Neonatal Diabetes and Hemihypertrophy. Diabetes, 2008, 57, 255-258.	0.3	15
362	Persistent Hyperinsulinemic Hypoglycemia and Maturity-Onset Diabetes of the Young Due to Heterozygous <i>HNF4A</i> Mutations. Diabetes, 2008, 57, 1659-1663.	0.3	133
363	Coincidence of a Novel <i>KCNJ11</i> Missense Variant R365H With a Paternally Inherited 6q24 Duplication in a Patient With Transient Neonatal Diabetes. Diabetes Care, 2008, 31, 1736-1737.	4.3	2
364	The Diabetic Phenotype in <i>HNF4A</i> Mutation Carriers Is Moderated By the Expression of <i>HNF4A</i> Isoforms From the P1 Promoter During Fetal Development. Diabetes, 2008, 57, 1745-1752.	0.3	64
365	An ABCC8 Gene Mutation and Mosaic Uniparental Isodisomy Resulting in Atypical Diffuse Congenital Hyperinsulinism. Diabetes, 2008, 57, 259-263.	0.3	58
366	Diabetes Susceptibility in the Canadian Oji-Cree Population Is Moderated by Abnormal mRNA Processing of <i>HNF1A</i> G319S Transcripts. Diabetes, 2008, 57, 1978-1982.	0.3	26
367	Human <i>CHN1</i> Mutations Hyperactivate α2-Chimaerin and Cause Duane's Retraction Syndrome. Science, 2008, 321, 839-843.	6.0	152
368	Whole gene deletion of the hepatocyte nuclear factor-1Â gene in a patient with the prune-belly syndrome. Nephrology Dialysis Transplantation, 2008, 23, 2412-2415.	0.4	39
369	Severe Intrauterine Growth Retardation and Atypical Diabetes Associated with a Translocation Breakpoint Disrupting Regulation of the Insulin-Like Growth Factor 2 Gene. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4373-4380.	1.8	31
370	Insulin Mutation Screening in 1,044 Patients With Diabetes. Diabetes, 2008, 57, 1034-1042.	0.3	347
371	Glibenclamide unresponsiveness in a Brazilian child with permanent neonatal diabetes mellitus and DEND syndrome due to a C166Y mutation in KCNJ11 (Kir6.2) gene. Arquivos Brasileiros De Endocrinologia E Metabologia, 2008, 52, 1350-1355.	1.3	20
372	Identification of Mutations in the Kir6.2 Subunit of the KATP Channel. Methods in Molecular Biology, 2008, 491, 235-245.	0.4	2
373	Mutations in ATP-Sensitive K+ Channel Genes Cause Transient Neonatal Diabetes and Permanent Diabetes in Childhood or Adulthood. Diabetes, 2007, 56, 1930-1937.	0.3	320
374	Origin of de Novo KCNJ11 Mutations and Risk of Neonatal Diabetes for Subsequent Siblings. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1773-1777.	1.8	52
375	Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of <i>ABCC8</i> causes neonatal diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18988-18992.	3.3	51
376	Renal cysts and diabetes due to a heterozygous HNF-1Â gene deletion. Nephrology Dialysis Transplantation, 2007, 22, 1271-1272.	0.4	4
377	Prevalence of Permanent Neonatal Diabetes in Slovakia and Successful Replacement of Insulin with Sulfonylurea Therapy in KCNJ11 and ABCC8 Mutation Carriers. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1276-1282.	1.8	100
378	Hepatocyte nuclear factor-1Â gene deletionsa common cause of renal disease. Nephrology Dialysis Transplantation, 2007, 23, 627-635.	0.4	95

#	Article	IF	CITATIONS
379	Insulin gene mutations as a cause of permanent neonatal diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15040-15044.	3.3	494
380	Sulfonylurea Treatment in Young Children With Neonatal Diabetes: Dealing with hyperglycemia, hypoglycemia, and sick days. Diabetes Care, 2007, 30, e28-e29.	4.3	29
381	Mutational analyses of UPIIIA, SHH, EFNB2, and HNF1β in persistent cloaca and associated kidney malformations. Journal of Pediatric Urology, 2007, 3, 2-9.	0.6	26
382	Permanent Neonatal Diabetes Caused by Dominant, Recessive, or Compound Heterozygous SUR1 Mutations with Opposite Functional Effects. American Journal of Human Genetics, 2007, 81, 375-382.	2.6	194
383	A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science, 2007, 316, 889-894.	6.0	3,884
384	Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes. Science, 2007, 316, 1336-1341.	6.0	2,040
385	Development of a Quantitative Real-Time Polymerase Chain Reaction Assay for the Detection of the JAK2 V617F Mutation. Journal of Molecular Diagnostics, 2007, 9, 42-46.	1.2	24
386	Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene. PLoS Medicine, 2007, 4, e118.	3.9	349
387	Three novel mutations in KIF21A highlight the importance of the third coiled-coil stalk domain in the etiology of CFEOM1. BMC Genetics, 2007, 8, 26.	2.7	48
388	Patients' understanding of genetic susceptibility testing in mainstream medicine: qualitative study on thrombophilia. BMC Health Services Research, 2007, 7, 82.	0.9	29
389	Mutations in HHEX are not a common cause of monogenic forms of beta cell dysfunction. Diabetologia, 2007, 50, 2019-2022.	2.9	5
390	Partial and whole gene deletion mutations of the GCK and HNF1A genes in maturity-onset diabetes of the young. Diabetologia, 2007, 50, 2313-2317.	2.9	59
391	Allelic drop-out may occur with a primer binding site polymorphism for the commonly used RFLP assay for the -1131T>C polymorphism of the Apolipoprotein AV gene. Lipids in Health and Disease, 2006, 5, 11.	1.2	12
392	Rapid and Sensitive Real-Time Polymerase Chain Reaction Method for Detection and Quantification of 3243A>G Mitochondrial Point Mutation. Journal of Molecular Diagnostics, 2006, 8, 225-230.	1.2	28
393	Isomers of the TCF1 gene encoding hepatocyte nuclear factor-1 alpha show differential expression in the pancreas and define the relationship between mutation position and clinical phenotype in monogenic diabetes. Human Molecular Genetics, 2006, 15, 2216-2224.	1.4	115
394	Switching from Insulin to Oral Sulfonylureas in Patients with Diabetes Due to Kir6.2 Mutations. New England Journal of Medicine, 2006, 355, 467-477.	13.9	878
395	Asian MODY: are we missing an important diagnosis?. Diabetic Medicine, 2006, 23, 1257-1260.	1.2	22
396	Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1? in human pancreatic development. Diabetic Medicine, 2006, 23, 1301-1306.	1.2	142

#	Article	IF	CITATIONS
397	KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. European Journal of Human Genetics, 2006, 14, 824-830.	1.4	134
398	Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6Âmonths of life, with the phenotype determined by genotype. Diabetologia, 2006, 49, 1190-1197.	2.9	221
399	Mutations in the genes encoding the pancreatic beta-cell KATPchannel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Human Mutation, 2006, 27, 220-231.	1.1	105
400	Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Human Mutation, 2006, 27, 854-869.	1.1	157
401	A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Human Molecular Genetics, 2006, 15, 1793-1800.	1.4	196
402	Defining the genetic aetiology of monogenic diabetes can improve treatment. Expert Opinion on Pharmacotherapy, 2006, 7, 1759-1767.	0.9	22
403	Phenotypic Multiple Endocrine Neoplasia Type 2B, Without Endocrinopathy or RET Gene Mutation: Implications for Management. Thyroid, 2006, 16, 605-608.	2.4	9
404	Mutations at the Same Residue (R50) of Kir6.2 (KCNJ11) That Cause Neonatal Diabetes Produce Different Functional Effects. Diabetes, 2006, 55, 1705-1712.	0.3	64
405	HLA Genotyping Supports a Nonautoimmune Etiology in Patients Diagnosed With Diabetes Under the Age of 6 Months. Diabetes, 2006, 55, 1895-1898.	0.3	109
406	Autosomal dominant inheritance of non-syndromic renal hypoplasia and dysplasia: dramatic variation in clinical severity in a single kindred. Nephrology Dialysis Transplantation, 2006, 22, 259-263.	0.4	15
407	Detection of an MEN1 gene mutation depends on clinical features and supports current referral criteria for diagnostic molecular genetic testing. Clinical Endocrinology, 2005, 62, 169-175.	1.2	91
408	The identification of a R201H mutation in KCNJ11, which encodes Kir6.2, and successful transfer to sustained-release sulphonylurea therapy in a subject with neonatal diabetes: evidence for heterogeneity of beta cell function among carriers of the R201H mutation. Diabetologia, 2005, 48, 1029-1031.	2.9	75
409	Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4α mutations in a large European collection. Diabetologia, 2005, 48, 878-885.	2.9	203
410	The position of premature termination codons in the hepatocyte nuclear factor â^'1 beta gene determines susceptibility to nonsense-mediated decay. Human Genetics, 2005, 118, 214-224.	1.8	45
411	Neonatal diabetes is more than just a paediatric problem: 57 years of diabetes from a Kir6.2 mutation. Practical Diabetes International: the International Journal for Diabetes Care Teams Worldwide, 2005, 22, 342-344.	0.2	3
412	Relapsing diabetes can result from moderately activating mutations in KCNJ11. Human Molecular Genetics, 2005, 14, 925-934.	1.4	184
413	High-Dose Glibenclamide Can Replace Insulin Therapy Despite Transitory Diarrhea in Early-Onset Diabetes Caused by a Novel R201L Kir6.2 Mutation. Diabetes Care, 2005, 28, 758-759.	4.3	77
414	Insights into the Structure and Regulation of Glucokinase from a Novel Mutation (V62M), Which Causes Maturity-onset Diabetes of the Young, Journal of Biological Chemistry, 2005, 280, 14105-14113	1.6	87

#	Article	IF	CITATIONS
415	Â-Cell Dysfunction, Insulin Sensitivity, and Glycosuria Precede Diabetes in Hepatocyte Nuclear Factor-1Â Mutation Carriers. Diabetes Care, 2005, 28, 1751-1756.	4.3	108
416	Permanent neonatal diabetes in an Asian infant. Journal of Pediatrics, 2005, 146, 131-133.	0.9	51
417	Mutations in hepatocyte nuclear factor-1Â and their related phenotypes. Journal of Medical Genetics, 2005, 43, 84-90.	1.5	291
418	Genetic testing for glucokinase mutations in clinically selected patients with MODY: a worthwhile investment. Swiss Medical Weekly, 2005, 135, 352-6.	0.8	27
419	Multiple Endocrine Neoplasia Types 1 and 2. , 2004, 92, 267-284.		3
420	Activating Mutations in the KCNJ11 Gene Encoding the ATP-Sensitive K+ Channel Subunit Kir6.2 Are Rare in Clinically Defined Type 1 Diabetes Diagnosed Before 2 Years. Diabetes, 2004, 53, 2998-3001.	0.3	51
421	Mesangiocapillary Glomerulonephritis Type 2 Associated with Familial Partial Lipodystrophy (Dunnigan-Kobberling Syndrome). Nephron Clinical Practice, 2004, 96, c35-c38.	2.3	21
422	Permanent Neonatal Diabetes due to Paternal Germline Mosaicism for an Activating Mutation of the KCNJ11 Gene Encoding the Kir6.2 Subunit of the β-Cell Potassium Adenosine Triphosphate Channel. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3932-3935.	1.8	87
423	Messenger RNA Transcripts of the Hepatocyte Nuclear Factor-1Â Gene Containing Premature Termination Codons Are Subject to Nonsense-Mediated Decay. Diabetes, 2004, 53, 500-504.	0.3	50
424	Contrasting Diabetes Phenotypes Associated With Hepatocyte Nuclear Factor-1Â and -1Â Mutations. Diabetes Care, 2004, 27, 1102-1107.	4.3	114
425	Premature birth and low birth weight associated with nonautoimmune hyperthyroidism due to an activating thyrotropin receptor gene mutation. Clinical Endocrinology, 2004, 60, 711-718.	1.2	47
426	Abnormal splicing of hepatocyte nuclear factor-1 beta in the renal cysts and diabetes syndrome. Diabetologia, 2004, 47, 937-942.	2.9	37
427	Activating Mutations in the Gene Encoding the ATP-Sensitive Potassium-Channel Subunit Kir6.2 and Permanent Neonatal Diabetes. New England Journal of Medicine, 2004, 350, 1838-1849.	13.9	1,077
428	Mutated MESP2 Causes Spondylocostal Dysostosis in Humans. American Journal of Human Genetics, 2004, 74, 1249-1254.	2.6	157
429	40th EASD Annual Meeting of the European Association for the Study of Diabetes. Diabetologia, 2004, 47, A1-A464.	2.9	41
430	Novel Mutations in X-Linked Dominant Chondrodysplasia Punctata (CDPX2). Journal of Investigative Dermatology, 2003, 121, 939-942.	0.3	17
431	Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor- 1^2 gene mutation. Kidney International, 2003, 63, 1645-1651.	2.6	142
432	Response to treatment with rosiglitazone in familial partial lipodystrophy due to a mutation in the LMNA gene. Diabetic Medicine, 2003, 20, 823-827.	1.2	62

#	Article	IF	CITATIONS
433	Molecular genetic prenatal diagnosis for a case of autosomal recessive spondylocostal dysostosis. Prenatal Diagnosis, 2003, 23, 575-579.	1.1	14
434	No Deterioration in Glycemic Control in HNF-1Â Maturity-Onset Diabetes of the Young Following Transfer From Long-Term Insulin to Sulphonylureas. Diabetes Care, 2003, 26, 3191-3192.	4.3	115
435	Insights Into the Biochemical and Genetic Basis of Glucokinase Activation From Naturally Occurring Hypoglycemia Mutations. Diabetes, 2003, 52, 2433-2440.	0.3	150
436	Identifying Hepatic Nuclear Factor 1Â Mutations in Children and Young Adults With a Clinical Diagnosis of Type 1 Diabetes. Diabetes Care, 2003, 26, 333-337.	4.3	84
437	Distinct Molecular and Morphogenetic Properties of Mutations in the Human HNF1β Gene That Lead to Defective Kidney Development. Journal of the American Society of Nephrology: JASN, 2003, 14, 2033-2041.	3.0	78
438	Etiological Investigation of Diabetes in Young Adults Presenting With Apparent Type 2 Diabetes. Diabetes Care, 2003, 26, 2088-2093.	4.3	56
439	Apolipoprotein-E Influences Aspects of Intellectual Ability in Type 1 Diabetes. Diabetes, 2003, 52, 145-148.	0.3	23
440	A Genome-Wide Scan in Families With Maturity-Onset Diabetes of the Young: Evidence for Further Genetic Heterogeneity. Diabetes, 2003, 52, 872-881.	0.3	62
441	Evidence for Haploinsufficiency of the Human HNF1α Gene Revealed by Functional Characterization of MODY3-Associated Mutations. Biological Chemistry, 2002, 383, 1691-700.	1.2	28
442	Maturity-Onset Diabetes of the Young Caused by a Balanced Translocation Where the 20q12 Break Point Results in Disruption Upstream of the Coding Region of Hepatocyte Nuclear Factor-4Â (HNF4A) Gene. Diabetes, 2002, 51, 2329-2333.	0.3	27
443	Frequent Occurrence of an Intron 4 Mutation in Multiple Endocrine Neoplasia Type 1. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 2688-2693.	1.8	51
444	Intrauterine Hyperglycemia Is Associated With an Earlier Diagnosis of Diabetes in HNF-1Â Gene Mutation Carriers. Diabetes Care, 2002, 25, 2287-2291.	4.3	102
445	Severe hyperglycemia after renal transplantation in a pediatric patient with a mutation of the Hepatocyte Nuclear Factor-11² gene. American Journal of Kidney Diseases, 2002, 40, 1325-1330.	2.1	23
446	Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor-11² mutations. Kidney International, 2002, 61, 1243-1251.	2.6	133
447	Heterogeneity in young adult onset diabetes: aetiology alters clinical characteristics. Diabetic Medicine, 2002, 19, 758-761.	1.2	45
448	Abnormal splicing of hepatocyte nuclear factor 1 alpha in maturity-onset diabetes of the young. Diabetologia, 2002, 45, 1463-1467.	2.9	23
449	Mutations in the Hepatocyte Nuclear Factor-1Î ² Gene Are Associated with Familial Hypoplastic Glomerulocystic Kidney Disease. American Journal of Human Genetics, 2001, 68, 219-224.	2.6	263
450	Studies of Association between the Gene for Calpain-10 and Type 2 Diabetes Mellitus in the United Kingdom. American Journal of Human Genetics, 2001, 69, 544-552.	2.6	171

#	Article	IF	CITATIONS
451	Predictive genetic testing in maturity-onset diabetes of the young (MODY). Diabetic Medicine, 2001, 18, 417-421.	1.2	60
452	Glucokinase mutations in a phenotypically selected multiethnic group of women with a history of gestational diabetes. Diabetic Medicine, 2001, 18, 683-684.	1.2	30
453	Observations�Maturity onset diabetes of the young (MODY) and early onset Type II diabetes are not caused by loss of imprinting at the transient neonatal diabetes (TNDM) locus. Diabetologia, 2001, 44, 924-924.	2.9	8
454	The Generalized Aminoaciduria Seen in Patients With Hepatocyte Nuclear Factor-1Â Mutations Is a Feature of All Patients With Diabetes and Is Associated With Glucosuria. Diabetes, 2001, 50, 2047-2052.	0.3	56
455	ACE Gene Polymorphism as a Prognostic Indicator in Patients With Type 2 Diabetes and Established Renal Disease. Diabetes Care, 2001, 24, 2115-2120.	4.3	40
456	Hepatocyte Nuclear Factor-1β. Journal of the American Society of Nephrology: JASN, 2001, 12, 2175-2180.	3.0	110
457	Proposed mechanism for a novel insertion/deletion frameshift mutation (I414G415ATCG?CCA) in the hepatocyte nuclear factor 1 alpha (HNF-1?) gene which causes maturity-onset diabetes of the young (MODY). Human Mutation, 2000, 16, 273-273.	1.1	8
458	Hepatocyte nuclear factor 1 alpha (HNF-1?) mutations in maturity-onset diabetes of the young. Human Mutation, 2000, 16, 377-385.	1.1	108
459	Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1l²1. Kidney International, 2000, 57, 898-907.	2.6	162
460	Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nature Genetics, 2000, 24, 438-441.	9.4	362
461	R127W in HNF4? is a loss-of-function mutation causing maturity-onset diabetes of the young (MODY) in a UK Caucasian family. Diabetologia, 2000, 43, 1203-1203.	2.9	5
462	A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria. Diabetologia, 2000, 43, 250-253.	2.9	183
463	Confirmation of linkage of Duane's syndrome and refinement of the disease locus to an 8.8-cM interval on chromosome 2q31. Human Genetics, 2000, 106, 636-638.	1.8	17
464	The mutated human gene encoding hepatocyte nuclear factor 1beta inhibits kidney formation in developing Xenopus embryos. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4695-4700.	3.3	72
465	No Evidence for Linkage at Candidate Type 2 Diabetes Susceptibility Loci on Chromosomes 12 and 20 in United Kingdom Caucasians. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 853-857.	1.8	17
466	A severe clinical phenotype results from the co-inheritance of type 2 susceptibility genes and a hepatocyte nuclear factor-1alpha mutation. Diabetes Care, 2000, 23, 424-425.	4.3	14
467	Confirmation of linkage of Duane's syndrome and refinement of the disease locus to an 8.8-cM interval on chromosome 2q31. Human Genetics, 2000, 106, 636-638.	1.8	58
468	Parent-offspring trios: a resource to facilitate the identification of type 2 diabetes genes. Diabetes, 1999, 48, 2475-2479.	0.3	45

#	Article	IF	CITATIONS
469	Non-penetrance in a MODY 3 family with a mutation in the hepatic nuclear factor 1α gene: implications for predictive testing. European Journal of Human Genetics, 1999, 7, 729-732.	1.4	15
470	Allelic drop-out in exon 2 of the hepatocyte nuclear factor-1alpha gene hinders the identification of mutations in three families with maturity-onset diabetes of the young. Diabetes, 1999, 48, 921-923.	0.3	32
471	A Gene for Autosomal Recessive Spondylocostal Dysostosis Maps to 19q13.1-q13.3. American Journal of Human Genetics, 1999, 65, 175-182.	2.6	81
472	Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. Journal of Clinical Investigation, 1999, 104, R33-R39.	3.9	216
473	Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nature Genetics, 1998, 19, 268-270.	9.4	565
474	Haemochromatosis and type 2 diabetes. Lancet, The, 1998, 352, 1068.	6.3	1
475	C282Y mutation in HFE (haemochromatosis) gene and type 2 diabetes. Lancet, The, 1998, 351, 1933-1934.	6.3	68
476	Genetic testing for maturity onset diabetes of the young in childhood hyperglycaemia. Archives of Disease in Childhood, 1998, 78, 552-554.	1.0	15
477	Mutations in hepatocyte nuclear factor 1beta are not a common cause of maturity-onset diabetes of the young in the U.K. Diabetes, 1998, 47, 1152-1154.	0.3	50
478	A rapid screening method for hepatocyte nuclear factor 1 alpha frameshift mutations; prevalence in maturity-onset diabetes of the young and late-onset non-insulin dependent diabetes. Human Genetics, 1997, 101, 351-354.	1.8	29
479	A missense mutation in the hepatocyte nuclear factor 4 alpha gene in a UK pedigree with maturity-onset diabetes of the young. Diabetologia, 1997, 40, 859-862.	2.9	57
480	Biomonitoring study of a group of workers potentially exposed to traffic fumes. , 1997, 30, 119-130.		14
481	A comparison of conventional metaphase analysis of Giemsa-stained chromosomes with multi-colour fluorescence in situ hybridization analysis to detect chromosome aberrations induced by daunomycin. Mutagenesis, 1996, 11, 537-546.	1.0	13
482	An investigation into the activation and deactivation of chlorinated hydrocarbons to genotoxins in metabolically competent human cells. Mutagenesis, 1996, 11, 247-274.	1.0	53
483	Use of multicolour chromosome painting to identify chromosomal rearrangements in human lymphocytes exposed to bleomycin: A comparison with conventional cytogenetic analysis of giemsa-stained chromosomes. Environmental and Molecular Mutagenesis, 1995, 26, 44-54.	0.9	30
484	A genetically engineered V79 cell line SD1 expressing rat CYP2B1 exhibits chromosomal instability at the integration site of the transfected DNA. Mutagenesis, 1995, 10, 549-554.	1.0	3
485	Induction of micronuclei in V79 Chinese hamster cells by hydroquinone and econazole nitrate. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1993, 287, 87-91.	0.4	11
486	A comparative study of the use of primary Chinese hamster liver cultures and genetically engineered immortal V79 Chinese hamster cell lines expressing rat liver CYP1A1, 1A2 and 2B1 cDNAs in micronucleus assays. Toxicology, 1993, 82, 131-149.	2.0	20

#	Article	IF	CITATIONS
487	A modified protocol for the cytochalasin B in vitro micronucleus assay using whole human blood or separated lymphocyte cultures. Mutagenesis, 1993, 8, 317-320.	1.0	33
488	Micronucleus assays using cytochalasin-blocked MCL-5 cells, a proprietary human cell line expressing five human cytochromesP-450 and microsomal epoxide hydrolase. Mutagenesis, 1993, 8, 363-372.	1.0	74
489	Cellular and chromosomal hypersensitivity to DNA crosslinking agents and topoisomerase inhibitors in the radiosensitive Chinese hamster irs mutants: phenotypic similarities to ataxia telangiectasia and Fanconi's anaemia cells. Carcinogenesis, 1993, 14, 2487-2494.	1.3	54
490	Increased sterigmatocystin-induced mutation frequency in Saccharomyces cerevisiae expressing cytochrome P450 CYP2B1. Biochemical Pharmacology, 1992, 43, 374-376.	2.0	6
491	The use of genetically engineered V79 Chinese hamster cultures expressing rat liver CYP1A1, 1A2 and 2B1 cDNAs in micronucleus assays. Mutagenesis, 1991, 6, 461-470.	1.0	73
492	The expression of cytochrome P450IIB1 in Saccharomyces cerevisia results in an increased mutation frequency when exposed to cyclophosphamide. Carcinogenesis, 1989, 10, 2139-2143.	1.3	25
493	Genomic variant sharing: a position statement. Wellcome Open Research, 0, 4, 22.	0.9	7
494	Misannotation of multiple-nucleotide variants risks misdiagnosis. Wellcome Open Research, 0, 4, 145.	0.9	7
495	Congenital hyperinsulinism and evolution to sulfonylurea-responsive diabetes later in life due to a novel homozygous p.L171F ABCC8 mutation. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 0, , .	0.4	2
496	An enhanced method for targeted next generation sequencing copy number variant detection using ExomeDepth. Wellcome Open Research, 0, 2, 49.	0.9	4
497	ATAD3 gene-familian de novo duplikazioek Harel-Yoon sindromea sortzen dute, eta kolesterolaren eta mitokondrien metabolismoan kalteak eragiten dituzte 0		0