Qingfeng Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6041351/publications.pdf

Version: 2024-02-01

90 papers 20,410 citations

44 h-index

57758

48315 88 g-index

92 all docs 92 docs citations 92 times ranked 17122 citing authors

#	Article	IF	CITATIONS
1	Enhancing the Efficiency and Stability of CsPbl ₃ Nanocrystal-Based Light-Emitting Diodes through Ligand Engineering with Octylamine. Journal of Physical Chemistry C, 2022, 126, 1085-1093.	3.1	12
2	Thermal Dynamic Selfâ€Healing Supramolecular Dopant Towards Efficient and Stable Flexible Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
3	Hydration Intermediate Phase Regulated Inâ€Plane and Outâ€Plane Epitaxy Growth of Oriented Nanoâ€Array Structures on Perovskite Single Crystals. Small, 2022, 18, e2107915.	10.0	6
4	Hyperbranched phthalocyanine enabling black-phase formamidinium perovskite solar cells processing and operating in humidity open air. Journal of Energy Chemistry, 2022, 71, 141-149.	12.9	10
5	Thermochromic Cs ₂ AgBiBr ₆ Single Crystal with Decreased Band Gap through Orderâ€Disorder Transition. Small, 2022, 18, e2201943.	10.0	15
6	Thermal Shock Fabrication of Ion‧tabilized Perovskite and Solar Cells. Advanced Materials, 2022, 34, .	21.0	15
7	lonogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy and Environmental Science, 2022, 15, 3439-3448.	30.8	20
8	Efficient and Stable Red Perovskite Lightâ€Emitting Diodes with Operational Stability >300 h. Advanced Materials, 2021, 33, e2008820.	21.0	119
9	Guanidineâ€Templated Manganese Halides Single Crystals toward Efficient Mechanoluminescence and Photoluminescence by Supramolecular Interactions Modulation. Advanced Optical Materials, 2021, 9, 2100862.	7. 3	12
10	Stable and Highly Flexible Perovskite Solar Cells with Power Conversion Efficiency Approaching 20% by Elastic Grain Boundary Encapsulation. CCS Chemistry, 2021, 3, 2035-2044.	7.8	37
11	Multiple Hydrogen Bond-Induced Structural Distortion for Broadband White-Light Emission in Two-Dimensional Perovskites. CCS Chemistry, 2021, 3, 2576-2583.	7. 8	17
12	Elimination of Interfacialâ€Electrochemicalâ€Reactionâ€Induced Polarization in Perovskite Single Crystals for Ultrasensitive and Stable Xâ€Ray Detector Arrays. Advanced Materials, 2021, 33, e2103078.	21.0	69
13	Reducing Photovoltage Loss in Inverted Perovskite Solar Cells by Quantum Dots Alloying Modification at Cathode Contact. Solar Rrl, 2020, 4, 1900468.	5.8	19
14	Ultrathin Perovskite Monocrystals Boost the Solar Cell Performance. Advanced Energy Materials, 2020, 10, 2000453.	19.5	42
15	Perovskite Monocrystals: Ultrathin Perovskite Monocrystals Boost the Solar Cell Performance (Adv.) Tj ETQq1 1	0.784314	rgBT /Overloc
16	Reducing photovoltage loss at the anode contact of methylammonium-free inverted perovskite solar cells by conjugated polyelectrolyte doping. Journal of Materials Chemistry A, 2020, 8, 7309-7316.	10.3	28
17	Modulating the optical and electrical properties of MAPbBr3 single crystals via voltage regulation engineering and application in memristors. Light: Science and Applications, 2020, 9, 111.	16.6	51
18	Dynamic Passivation in Perovskite Quantum Dots for Specific Ammonia Detection at Room Temperature. Small, 2020, 16, e1904462.	10.0	58

#	Article	IF	CITATIONS
19	Efficient lateral-structure perovskite single crystal solar cells with high operational stability. Nature Communications, 2020, 11, 274.	12.8	120
20	NIR Light Driven Terahertz Wave Modulator with a Large Modulation Depth Based on a Siliconâ€PEDOT:PSSâ€Perovskite Hybrid System. Advanced Materials Technologies, 2020, 5, 1901090.	5.8	9
21	Atomistic Surface Passivation of CH ₃ NH ₃ Pbl ₃ Perovskite Single Crystals for Highly Sensitive Coplanar-Structure X-Ray Detectors. Research, 2020, 2020, 5958243.	5.7	60
22	Fast Growth of Thin MAPbl ₃ Crystal Wafers on Aqueous Solution Surface for Efficient Lateralâ€5tructure Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807707.	14.9	62
23	Stable, Efficient Near-Infrared Light-Emitting Diodes Enabled by $\hat{l}\pm\hat{l}$ Phase Modulation. Journal of Physical Chemistry Letters, 2019, 10, 2101-2107.	4.6	14
24	Low-Temperature Solution-Processed Mg:SnO ₂ Nanoparticles as an Effective Cathode Interfacial Layer for Inverted Polymer Solar Cell. ACS Sustainable Chemistry and Engineering, 2018, 6, 6702-6710.	6.7	25
25	Hole Extraction Enhancement for Efficient Polymer Solar Cells with Boronic Acid Functionalized Carbon Nanotubes doped Hole Transport Layers. ACS Sustainable Chemistry and Engineering, 2018, 6, 5122-5131.	6.7	20
26	Large electrostrictive response in lead halide perovskites. Nature Materials, 2018, 17, 1020-1026.	27.5	137
27	Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals. Nature Communications, 2017, 8, 14417.	12.8	189
28	CH ₃ NH ₃ PbI ₃ perovskites: Ferroelasticity revealed. Science Advances, 2017, 3, e1602165.	10.3	257
29	Composition Engineering in Doctorâ€Blading of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700302.	19.5	239
30	Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy and Environmental Science, 2017, 10, 516-522.	30.8	720
31	Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nature Communications, 2017, 8, 1890.	12.8	467
32	Thin Insulating Tunneling Contacts for Efficient and Waterâ€Resistant Perovskite Solar Cells. Advanced Materials, 2016, 28, 6734-6739.	21.0	533
33	Lateralâ€Structure Singleâ€Crystal Hybrid Perovskite Solar Cells via Piezoelectric Poling. Advanced Materials, 2016, 28, 2816-2821.	21.0	144
34	Airâ€Stable, Efficient Mixedâ€Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer. Advanced Energy Materials, 2016, 6, 1600372.	19.5	275
35	Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Physical Chemistry Chemical Physics, 2016, 18, 30484-30490.	2.8	322
36	Efficient Semitransparent Perovskite Solar Cells for 23.0%â€Efficiency Perovskite/Silicon Fourâ€Terminal Tandem Cells. Advanced Energy Materials, 2016, 6, 1601128.	19.5	240

#	Article	IF	CITATIONS
37	Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nature Communications, 2016, 7, 12806.	12.8	350
38	Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells. Energy and Environmental Science, 2016, 9, 867-872.	30.8	62
39	Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy and Environmental Science, 2016, 9, 1752-1759.	30.8	917
40	Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering Reports, 2016, 101, 1-38.	31.8	117
41	Charge Carrier Lifetimes Exceeding 15 $\hat{l}^{1}/\!\!4$ s in Methylammonium Lead Iodide Single Crystals. Journal of Physical Chemistry Letters, 2016, 7, 923-928.	4.6	226
42	Electron-hole diffusion lengths > 175 νm in solution-grown CH ₃ NH ₃ Pbl ₃ single crystals. Science, 2015, 347, 967-970.	12.6	4,642
43	Improving the sensitivity of a near-infrared nanocomposite photodetector by enhancing trap induced hole injection. Applied Physics Letters, 2015, 106, .	3.3	43
44	Highâ€Gain and Lowâ€Drivingâ€Voltage Photodetectors Based on Organolead Triiodide Perovskites. Advanced Materials, 2015, 27, 1912-1918.	21.0	560
45	Distinct Exciton Dissociation Behavior of Organolead Trihalide Perovskite and Excitonic Semiconductors Studied in the Same System. Small, 2015, 11, 2164-2169.	10.0	78
46	Photodetectors: High-Gain and Low-Driving-Voltage Photodetectors Based on Organolead Triiodide Perovskites (Adv. Mater. 11/2015). Advanced Materials, 2015, 27, 1967-1967.	21.0	3
47	Organometal Trihalide Perovskite Single Crystals: A Next Wave of Materials for 25% Efficiency Photovoltaics and Applications Beyond?. Journal of Physical Chemistry Letters, 2015, 6, 3218-3227.	4.6	220
48	Abnormal crystal growth in CH ₃ NH ₃ PbI _{3â^'x} Cl _x using a multi-cycle solution coating process. Energy and Environmental Science, 2015, 8, 2464-2470.	30.8	240
49	Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells. Nano Energy, 2015, 16, 47-53.	16.0	36
50	Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy and Environmental Science, 2015, 8, 1544-1550.	30.8	606
51	Efficiency Enhancement in Polymer Solar Cells With a Polar Small Molecule Both at Interface and in the Bulk Heterojunction Layer. IEEE Journal of Photovoltaics, 2015, 5, 1408-1413.	2.5	5
52	Chloride Incorporation Process in CH ₃ Cl _{<i>x</i>} Cl _{<i>x</i>} Perovskites via Nanoscale Bandgap Maps. Nano Letters, 2015, 15, 8114-8121.	9.1	165
53	Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9, 679-686.	31.4	1,201
54	An efficient photovoltaic device based on novel D–A–D solution-processable small molecules. Journal of Materials Science, 2015, 50, 937-947.	3.7	11

#	Article	IF	Citations
55	Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Materials, 2015, 14, 193-198.	27.5	1,372
56	Engineering Crystalline Grain of Hybrid Perovskites for High Efficiency Solar Cells and Beyond. , 2015, , .		1
57	An Ultravioletâ€toâ€NIR Broad Spectral Nanocomposite Photodetector with Gain. Advanced Optical Materials, 2014, 2, 549-554.	7.3	183
58	Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy and Environmental Science, 2014, 7, 2619-2623.	30.8	1,154
59	Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy and Environmental Science, 2014, 7, 2359-2365.	30.8	754
60	Solvent Annealing of Perovskiteâ€Induced Crystal Growth for Photovoltaicâ€Device Efficiency Enhancement. Advanced Materials, 2014, 26, 6503-6509.	21.0	1,527
61	Surface thermal stability of iron pyrite nanocrystals: Role of capping ligands. Thin Solid Films, 2014, 562, 361-366.	1.8	14
62	Zinc alloyed iron pyrite ternary nanocrystals for band gap broadening. Journal of Materials Chemistry A, 2013, 1, 12060.	10.3	22
63	Synthesis and Application of Ferroelectric P(VDFâ€TrFE) Nanoparticles in Organic Photovoltaic Devices for High Efficiency. Advanced Energy Materials, 2013, 3, 1581-1588.	19.5	50
64	Influence of a polyelectrolyte based-fluorene interfacial layer on the performance of a polymer solar cell. Journal of Materials Chemistry A, 2013, 1, 11443.	10.3	10
65	Solutionâ€Processed Fullereneâ€Based Organic Schottky Junction Devices for Largeâ€Openâ€Circuitâ€Voltage Organic Solar Cells. Advanced Materials, 2013, 25, 572-577.	21.0	101
66	Solution-Processed Fullerene-Based Organic Schottky Junction Devices for Large-Open-Circuit-Voltage Organic Solar Cells (Adv. Mater. 4/2013). Advanced Materials, 2013, 25, 571-571.	21.0	4
67	Ferroelectric Materials: Synthesis and Application of Ferroelectric P(VDFâ€TrFE) Nanoparticles in Organic Photovoltaic Devices for High Efficiency (Adv. Energy Mater. 12/2013). Advanced Energy Materials, 2013, 3, 1672-1672.	19.5	2
68	Solution-Processed Nanoparticle Super-Float-Gated Organic Field-Effect Transistor as Un-cooled Ultraviolet and Infrared Photon Counter. Scientific Reports, 2013, 3, 2707.	3.3	13
69	One-step solution synthesis of bismuth sulfide (Bi ₂ S ₃) with various hierarchical architectures and their photoresponse properties. RSC Advances, 2012, 2, 234-240.	3. 6	59
70	A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nature Nanotechnology, 2012, 7, 798-802.	31.5	634
71	Solution synthesis of copper selenide nanocrystals and their electrical transport properties. CrystEngComm, 2012, 14, 2139.	2.6	54
72	"Green―polymer solar cell based on water-soluble poly [3-(potassium-6-hexanoate) thiophene-2, 5-diyl] and aqueous-dispersible noncovalent functionalized graphene sheets. Solar Energy Materials and Solar Cells, 2012, 97, 28-33.	6.2	48

#	Article	IF	CITATIONS
73	Novel solution processable small molecule containing new electron-withdrawing group and oligothiophene for photovoltaic applications. Solar Energy Materials and Solar Cells, 2012, 98, 343-350.	6.2	10
74	A benzo[1,2-b:4,5-b′]dithiophene-based copolymer with deep HOMO level for efficient polymer solar cells. Solar Energy Materials and Solar Cells, 2012, 100, 239-245.	6.2	30
7 5	All-water-solution processed solar cells based on PPV and TiO2 nanocrystals. Solar Energy Materials and Solar Cells, 2012, 104, 75-80.	6.2	17
76	Design and synthesis of solution processable small molecules towards high photovoltaic performance. Journal of Materials Chemistry, 2011, 21, 2159-2168.	6.7	81
77	Aqueous-Solution-Processed Hybrid Solar Cells from Poly(1,4-naphthalenevinylene) and CdTe Nanocrystals. ACS Applied Materials & Description (1,4-naphthalenevinylene) and CdTe Nanocrystals.	8.0	32
78	Synthesis of Cu _{2–<i>x</i>} Se Nanocrystals by Tuning the Reactivity of Se. Journal of Physical Chemistry C, 2011, 115, 9909-9916.	3.1	26
79	A low band gap donor–acceptor copolymer containing fluorene and benzothiadiazole units: synthesis and photovoltaic properties. New Journal of Chemistry, 2011, 35, 385-393.	2.8	38
80	Efficiency enhancement of polymer solar cells by incorporating a self-assembled layer of silver nanodisks. Solar Energy Materials and Solar Cells, 2011, 95, 3281-3286.	6.2	45
81	Synthesis and photovoltaic properties of lowâ€bandgap 4,7â€dithienâ€2â€ylâ€2,1,3â€benzothiadiazoleâ€based poly(heteroarylenevinylene)s. Journal of Polymer Science Part A, 2011, 49, 2715-2724.	2.3	26
82	New amorphous small moleculesâ€"Synthesis, characterization and their application in bulk heterojunction solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 2272-2280.	6.2	42
83	A two-step method combining electrodepositing and spin-coating for solar cell processing. Journal of Solid State Electrochemistry, 2010, 14, 1051-1056.	2.5	12
84	All-spin-coating vacuum-free processed semi-transparent inverted polymer solar cells with PEDOT:PSS anode and PAH-D interfacial layer. Organic Electronics, 2010, 11, 1327-1331.	2.6	76
85	Alternating phenylenevinylene copolymers with dithienbenzothiadiazole moieties: Synthesis, photophysical, and photovoltaic properties. Journal of Applied Polymer Science, 2009, 114, 2740-2750.	2.6	1
86	Synthesis, photophysical and photovoltaic properties of star-shaped molecules with triphenylamine as core and phenylethenylthiophene or dithienylethylene as arms. Solar Energy Materials and Solar Cells, 2009, 93, 1952-1958.	6.2	28
87	Donorâ^'Acceptor Molecule as the Acceptor for Polymer-Based Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2009, 113, 7882-7886.	3.1	43
88	New 4,7-dithienebenzothiadiazole derivatives with cyano-vinylene bonds: Synthesis, photophysics and photovoltaics. Synthetic Metals, 2009, 159, 1471-1477.	3.9	11
89	Synthesis, photophysics and photovoltaics of alternating vinylene-copolymer and model compound containing triphenylamine moieties along the backbone. Synthetic Metals, 2009, 159, 1546-1551.	3.9	О
90	Thermal Dynamic Selfâ€Healing Supramolecular Dopant Towards Efficient and Stable Flexible Perovskite Solar Cells. Angewandte Chemie, 0, , .	2.0	3