List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040757/publications.pdf Version: 2024-02-01

CALER F FINCH

#	Article	IF	CITATIONS
1	Inflammatory Exposure and Historical Changes in Human Life-Spans. Science, 2004, 305, 1736-1739.	12.6	676
2	Vascular dysfunction—The disregarded partner of Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 158-167.	0.8	454
3	Genetics of Aging. Science, 1997, 278, 407-411.	12.6	436
4	The Genetics of Aging. Annual Review of Genomics and Human Genetics, 2001, 2, 435-462.	6.2	340
5	Vaccination with soluble Aβ oligomers generates toxicityâ€neutralizing antibodies. Journal of Neurochemistry, 2001, 79, 595-605.	3.9	309
6	Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Translational Psychiatry, 2017, 7, e1022-e1022.	4.8	298
7	Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet, The, 2017, 389, 1730-1739.	13.7	264
8	Slow Mortality Rate Accelerations During Aging in Some Animals Approximate That of Humans. Science, 1990, 249, 902-905.	12.6	263
9	Glial Fibrillary Acidic Protein: Regulation by Hormones, Cytokines, and Growth Factors. Brain Pathology, 1994, 4, 259-275.	4.1	213
10	Altered Profiles of Estradiol and Progesterone Associated with Prolonged Estrous Cycles and Persistent Vaginal Cornification in Aging C578L/6J Mice1. Biology of Reproduction, 1981, 24, 784-794.	2.7	207
11	The evolution of Alzheimer disease, the reproductive schedule, and apoE isoformsâ~†. Neurobiology of Aging, 1999, 20, 407-428.	3.1	198
12	TGFâ€Î²1 is an organizer of responses to neurodgeneration. Journal of Cellular Biochemistry, 1993, 53, 314-322.	2.6	196
13	Meatâ€Adaptive Genes and the Evolution of Slower Aging in Humans. Quarterly Review of Biology, 2004, 79, 3-50.	0.1	188
14	Glutamatergic Neurons in Rodent Models Respond to Nanoscale Particulate Urban Air Pollutants <i>in Vivo</i> and <i>in Vitro</i> . Environmental Health Perspectives, 2011, 119, 1003-1009.	6.0	174
15	Longitudinal Studies of Estrous Cyclicity in Aging C57BL/6J Mice: II. Cessation of Cyclicity and the Duration of Persistent Vaginal Cornification 1. Biology of Reproduction, 1984, 31, 446-453.	2.7	170
16	Systemic Inflammation, Infection, ApoE Alleles, and Alzheimer Disease: A Position Paper. Current Alzheimer Research, 2007, 4, 185-189.	1.4	160
17	Dopamine and Serotonin Systems in Human and Rodent Brain: Effects of Age and Neurodegenerative Disease. Journal of the American Geriatrics Society, 1987, 35, 334-345.	2.6	156
18	Lingering prenatal effects of the 1918 influenza pandemic on cardiovascular disease. Journal of Developmental Origins of Health and Disease, 2010, 1, 26-34.	1.4	150

#	Article	IF	CITATIONS
19	Clusterin (SGP-2): A multifunctional glycoprotein with regional expression in astrocytes and neurons of the adult rat brain. Journal of Comparative Neurology, 1994, 339, 387-400.	1.6	144
20	Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. Free Radical Biology and Medicine, 2012, 52, 2038-2046.	2.9	136
21	Neurons, glia, and plasticity in normal brain aging. Neurobiology of Aging, 2003, 24, S123-S127.	3.1	130
22	Twentieth century surge of excess adult male mortality. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8993-8998.	7.1	128
23	Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain. Environmental Health Perspectives, 2016, 124, 1537-1546.	6.0	127
24	Update on Slow Aging and Negligible Senescence – A Mini-Review. Gerontology, 2009, 55, 307-313.	2.8	120
25	Aging and glial responses to lipopolysaccharide in vitro: greater induction of IL-1 and IL-6, but smaller induction of neurotoxicity. Experimental Neurology, 2003, 182, 135-141.	4.1	117
26	Aging and Inflammation in Two Epidemiological Worlds. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 196-199.	3.6	116
27	Castration Enhances Expression of Glial Fibrillary Acidic Protein and Sulfated Glycoprotein-2 in the Intact and Lesion-Altered Hippocampus of the Adult Male Rat. Molecular Endocrinology, 1990, 4, 1995-2002.	3.7	113
28	Maximum Life Span Predictions From the Gompertz Mortality Model. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 1996, 51A, B183-B194.	3.6	111
29	The menopause and aging, a comparative perspective. Journal of Steroid Biochemistry and Molecular Biology, 2014, 142, 132-141.	2.5	111
30	Bidirectional Transcription Regulation of Glial Fibrillary Acidic Protein by Estradiolin Vivoandin Vitro1. Endocrinology, 1998, 139, 3202-3209.	2.8	110
31	Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo. Journal of Neuroinflammation, 2017, 14, 84.	7.2	107
32	Prenatal Exposure to Urban Air Nanoparticles in Mice Causes Altered Neuronal Differentiation and Depression-Like Responses. PLoS ONE, 2013, 8, e64128.	2.5	103
33	Ambient ultrafine particles alter lipid metabolism and HDL anti-oxidant capacity in LDLR-null mice. Journal of Lipid Research, 2013, 54, 1608-1615.	4.2	95
34	Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons. Neurobiology of Aging, 2017, 53, 48-58.	3.1	91
35	APOE Alleles and Diet in Brain Aging and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 150.	3.4	83
36	RNA and Protein Metabolism in the Aging Brain. Annual Review of Neuroscience, 1990, 13, 75-88.	10.7	82

#	Article	IF	CITATIONS
37	History and prospects: symposium on organisms with slow aging. Experimental Gerontology, 2001, 36, 593-597.	2.8	82
38	Blood lipids, infection, and inflammatory markers in the Tsimane of Bolivia. American Journal of Human Biology, 2010, 22, 731-740.	1.6	82
39	The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity. Neurobiology of Aging, 2015, 36, 2282-2295.	3.1	80
40	Variations in Senescence and Longevity Include the Possibility of Negligible Senescence. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 1998, 53A, B235-B239.	3.6	78
41	Glial Fibrillary Acidic Protein Transcription Responses to Transforming Growth Factorâ€Î²1 and Interleukinâ€1β Are Mediated by a Nuclear Factorâ€1â€Like Site in the Nearâ€Upstream Promoter. Journal of Neurochemistry, 1999, 72, 1353-1361.	3.9	76
42	Dopaminergic Changes in the Basal Ganglia A Generalized Phenomenon of Aging in Mammals. Annals of the New York Academy of Sciences, 1988, 515, 145-160.	3.8	75
43	Apolipoprotein E4 is associated with improved cognitive function in Amazonian foragerâ€horticulturalists with a high parasite burden. FASEB Journal, 2017, 31, 1508-1515.	0.5	73
44	Prenatal and early life exposure to air pollution induced hippocampal vascular leakage and impaired neurogenesis in association with behavioral deficits. Translational Psychiatry, 2018, 8, 261.	4.8	71
45	The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice. Neurobiology of Aging, 2016, 37, 47-57.	3.1	70
46	Developmental origins of aging in brain and blood vessels: an overview. Neurobiology of Aging, 2005, 26, 281-291.	3.1	64
47	APOE genotype and sex affect microglial interactions with plaques in Alzheimer's disease mice. Acta Neuropathologica Communications, 2019, 7, 82.	5.2	64
48	Toxicity of urban air pollution particulate matter in developing and adult mouse brain: Comparison of total and filter-eluted nanoparticles. Environment International, 2020, 136, 105510.	10.0	64
49	Elevated Density of [3H]Imipramine Binding in Aged Human Brain. Journal of Neurochemistry, 1985, 45, 1382-1389.	3.9	62
50	Glucocorticoid Endangerment of Hippocampal Neurons Does not Involve Deoxyribonucleic Acid Cleavage. Endocrinology, 1989, 124, 3083-3088.	2.8	61
51	Urban air pollutants reduce synaptic function of <scp>CA</scp> 1 neurons via an <scp>NMDA</scp> /NÈ® pathway <i>in vitro</i> . Journal of Neurochemistry, 2013, 127, 509-519.	3.9	60
52	Altered Gene Expression in Alzheimer's Disease Brain Tissue. Canadian Journal of Neurological Sciences, 1989, 16, 473-476.	0.5	59
53	Primate aging in the mammalian scheme: the puzzle of extreme variation in brain aging. Age, 2012, 34, 1075-1091.	3.0	59
54	The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience, 2017, 39, 499-550.	4.6	59

#	Article	IF	CITATIONS
55	Urban traffic-derived nanoparticulate matter reduces neurite outgrowth via TNFα in vitro. Journal of Neuroinflammation, 2016, 13, 19.	7.2	58
56	The Alzheimer's Disease Exposome. Alzheimer's and Dementia, 2019, 15, 1123-1132.	0.8	58
57	The neurobiology of middle-age has arrived. Neurobiology of Aging, 2009, 30, 515-520.	3.1	57
58	Traffic-related air pollutants (TRAP-PM) promote neuronal amyloidogenesis through oxidative damage to lipid rafts. Free Radical Biology and Medicine, 2020, 147, 242-251.	2.9	56
59	Commentary: is Alzheimer's disease uniquely human?. Neurobiology of Aging, 2015, 36, 553-555.	3.1	55
60	Cardiovascular disease and type 2 diabetes in evolutionary perspective: A critical role for helminths?. Evolution, Medicine and Public Health, 2016, 2016, 338-357.	2.5	53
61	Effect of APOE ε4 allele on survival and fertility in an adverse environment. PLoS ONE, 2017, 12, e0179497.	2.5	51
62	Tyrosine Hydroxylase mRNA Concentration in Midbrain Dopaminergic Neurons Is Differentially Regulated by Reserpine. Journal of Neurochemistry, 1990, 55, 1793-1799.	3.9	47
63	Early cohort mortality predicts the rate of aging in the cohort: a historical analysis. Journal of Developmental Origins of Health and Disease, 2012, 3, 380-386.	1.4	47
64	Glial gene expression during aging in rat striatum and in long-term responses to 6-OHDA lesions. Synapse, 1999, 31, 278-284.	1.2	46
65	The relationships of aging changes in the basal ganglia to manifestations of Huntington's chorea. Annals of Neurology, 1980, 7, 406-411.	5.3	45
66	Ovarian aging in developmental and evolutionary contexts. Annals of the New York Academy of Sciences, 2010, 1204, 82-94.	3.8	45
67	Prolongation and Cessation of Estrous Cycles in Aging C57BL/6J Mice are Differentially Regulated Events. Biology of Reproduction, 1986, 34, 849-858.	2.7	42
68	Traffic-related air pollution and brain development. AIMS Environmental Science, 2015, 2, 353-373.	1.4	41
69	Evolution of the human lifespan, past, present, and future: phases in the evolution of human life expectancy in relation to the inflammatory load. Proceedings of the American Philosophical Society, 2012, 156, 9-44.	0.5	41
70	Methylation of the glial fibrillary acidic protein gene shows novel biphasic changes during brain development. Glia, 1996, 17, 195-205.	4.9	40
71	Nanoparticulate matter exposure results in neuroinflammatory changes in the corpus callosum. PLoS ONE, 2018, 13, e0206934.	2.5	40
72	Enlarged Seminal Vesicles of Senescent C57BL/6J Mice. Journal of Gerontology, 1974, 29, 134-138.	1.9	39

#	Article	IF	CITATIONS
73	Cell resilience in species life spans: a link to inflammation?. Aging Cell, 2010, 9, 519-526.	6.7	39
74	Glycine N-Methyltransferase is a Regulatory Enzyme which Increases in Ageing Animals. Nature, 1973, 243, 411-413.	27.8	38
75	Kainic Acid and Decorticating Lesions Stimulate the Synthesis of C1q Protein in Adult Rat Brain. Journal of Neurochemistry, 1997, 68, 2046-2052.	3.9	38
76	The Exposome in Human Evolution: From Dust to Diesel. Quarterly Review of Biology, 2019, 94, 333-394.	0.1	38
77	Inflammatory Gene Variants in the Tsimane, an Indigenous Bolivian Population with a High Infectious Load. Biodemography and Social Biology, 2011, 57, 33-52.	1.0	37
78	Aging attenuates redox adaptive homeostasis and proteostasis in female mice exposed to traffic-derived nanoparticles (†vehicular smog'). Free Radical Biology and Medicine, 2018, 121, 86-97.	2.9	36
79	Why Did Ancient People Have Atherosclerosis? From Autopsies to Computed Tomography to Potential Causes. Global Heart, 2014, 9, 229.	2.3	35
80	Can Estrogens Prevent Neurodegeneration?. Drugs and Aging, 1997, 11, 87-95.	2.7	34
81	Pituitary tumorigenesis in aging female C57BL/6J mice: A light and electron microscopic study. The Anatomical Record, 1981, 199, 423-432.	1.8	33
82	Estradiol (E2) Enhances Neurite Outgrowth by Repressing Glial Fibrillary Acidic Protein Expression and Reorganizing Laminin. Endocrinology, 2002, 143, 636-646.	2.8	33
83	Air Pollution Alters Caenorhabditis elegans Development and Lifespan: Responses to Traffic-Related Nanoparticulate Matter. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1189-1197.	3.6	27
84	Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. Journal of Alzheimer's Disease, 2020, 76, 773-797.	2.6	27
85	The ApoE Locus and COVID-19: Are We Going Where We Have Been?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, e1-e3.	3.6	26
86	Cell-based assays that predict in vivo neurotoxicity of urban ambient nano-sized particulate matter. Free Radical Biology and Medicine, 2019, 145, 33-41.	2.9	25
87	APOE4 is associated with elevated blood lipids and lower levels of innate immune biomarkers in a tropical Amerindian subsistence population. ELife, 2021, 10, .	6.0	25
88	Uneven Futures of Human Lifespans: Reckonings from Gompertz Mortality Rates, Climate Change, and Air Pollution. Gerontology, 2014, 60, 183-188.	2.8	23
89	Apolipoprotein E and Sex Bias in Cerebrovascular Aging of Men and Mice. Trends in Neurosciences, 2016, 39, 625-637.	8.6	23
90	Constant molecular aging rates vs. the exponential acceleration of mortality. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1121-1123.	7.1	23

#	Article	IF	CITATIONS
91	Adult mouse hippocampal transcriptome changes associated with long-term behavioral and metabolic effects of gestational air pollution toxicity. Translational Psychiatry, 2020, 10, 218.	4.8	23
92	Stroke Damage Is Exacerbated by Nano-Size Particulate Matter in a Mouse Model. PLoS ONE, 2016, 11, e0153376.	2.5	23
93	Air Pollution Particulate Matter Exposure and Chronic Cerebral Hypoperfusion and Measures of White Matter Injury in a Murine Model. Environmental Health Perspectives, 2021, 129, 87006.	6.0	22
94	Mouse brain transcriptome responses to inhaled nanoparticulate matter differed by sex and APOE in Nrf2-Nfkb interactions. ELife, 2020, 9, .	6.0	22
95	A perspective on sporadic inclusion-body myositis: The role of aging and inflammatory processes. Neurology, 2006, 66, S1-S6.	1.1	21
96	Exposure to Nanoscale Particulate Matter from Gestation to Adulthood Impairs Metabolic Homeostasis in Mice. Scientific Reports, 2019, 9, 1816.	3.3	21
97	Atherosclerosis in Ancient and Modern Egyptians:The Horus Study. Clobal Heart, 2014, 9, 197.	2.3	21
98	Genomic Correlates of Atherosclerosis in Ancient Humans. Global Heart, 2014, 9, 203.	2.3	20
99	Computed tomography shows high fracture prevalence among physically active forager-horticulturalists with high fertility. ELife, 2019, 8, .	6.0	20
100	Is coronary calcium scoring too late? Total body arterial calcium burden in patients without known CAD and normal MPI. Journal of Nuclear Cardiology, 2018, 25, 1990-1998.	2.1	19
101	Cognitive impairment and World Trade Centre-related exposures. Nature Reviews Neurology, 2022, 18, 103-116.	10.1	18
102	[3H]Fluphenazine Binding to Brain Membranes: Simultaneous Measurement of D-1 and D-2 Receptor Sites. Journal of Neurochemistry, 1986, 46, 1623-1631.	3.9	16
103	Alzheimer's Disease and Some Speculations about the Evolution of Its Modifiers. Annals of the New York Academy of Sciences, 2000, 924, 99-103.	3.8	16
104	Comment on "The plateau of human mortality: Demography of longevity pioneers― Science, 2018, 361, .	12.6	16
105	The Orthopedic Diseases of Ancient Egypt. Anatomical Record, 2015, 298, 1036-1046.	1.4	15
106	Female vulnerability to the effects of smoking on health outcomes in older people. PLoS ONE, 2020, 15, e0234015.	2.5	15
107	Computed Tomographic Evidence of Atherosclerosis in the Mummified Remains of Humans From Around the World. Global Heart, 2014, 9, 187.	2.3	14
108	Age, sex, and cerebral microbleeds in EFAD Alzheimer disease mice. Neurobiology of Aging, 2021, 103, 42-51.	3.1	14

#	Article	IF	CITATIONS
109	Air Pollution Particulate Matter Amplifies White Matter Vascular Pathology and Demyelination Caused by Hypoperfusion. Frontiers in Immunology, 2021, 12, 785519.	4.8	14
110	Prevalence of dementia and mild cognitive impairment in indigenous Bolivian foragerâ€horticulturalists. Alzheimer's and Dementia, 2023, 19, 44-55.	0.8	14
111	Does selection for short sleep duration explain human vulnerability to Alzheimer's disease?. Evolution, Medicine and Public Health, 2017, 2017, 39-46.	2.5	13
112	Will prenatal exposure to SARS-CoV-2 define a birth cohort with accelerated aging in the century ahead?. Journal of Developmental Origins of Health and Disease, 2021, 12, 683-687.	1.4	13
113	Environmental influences that may precede fertilization: a first examination of the prezygotic hypothesis from maternal age influences on twins. Behavior Genetics, 1998, 28, 101-106.	2.1	12
114	Hepatic but Not CNS-Expressed Human C-Reactive Protein Inhibits Experimental Autoimmune Encephalomyelitis in Transgenic Mice. Autoimmune Diseases, 2015, 2015, 1-8.	0.6	12
115	Nanoparticulate matter exposure results in white matter damage and an inflammatory microglial response in an experimental murine model. PLoS ONE, 2021, 16, e0253766.	2.5	12
116	The Biology of Aging in Model Organisms. Alzheimer Disease and Associated Disorders, 2003, 17, S39-S41.	1.3	11
117	Astrocytic estrogen receptors and impaired neurotrophic responses in a rat model of perimenopause. Frontiers in Aging Neuroscience, 2015, 7, 179.	3.4	11
118	A Workshop on Cognitive Aging and Impairment in the 9/11-Exposed Population. International Journal of Environmental Research and Public Health, 2021, 18, 681.	2.6	10
119	Neurons, glia, and plasticity in normal brain aging. Advances in Gerontology = Uspekhi Gerontologii / Rossiiskaia Akademiia Nauk, Gerontologicheskoe Obshchestvo, 2002, 10, 35-9.	0.3	10
120	Age is just a number. ELife, 2018, 7, .	6.0	9
121	Funerary Artifacts, Social Status, and Atherosclerosis in Ancient Peruvian Mummy Bundles. Global Heart, 2014, 9, 219.	2.3	9
122	The Indigenous South American Tsimane Exhibit Relatively Modest Decrease in Brain Volume With Age Despite High Systemic Inflammation. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 2147-2155.	3.6	9
123	Cerebral cortex and blood transcriptome changes in mouse neonates prenatally exposed to air pollution particulate matter. Journal of Neurodevelopmental Disorders, 2021, 13, 30.	3.1	9
124	The neurotoxicology of hard foraging and fat-melts. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17887-17888.	7.1	8
125	The <i>APOE</i> gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans. Alzheimer's and Dementia, 2021, 17, 175-190.	0.8	8
126	Urban Air Pollution Nanoparticles from LosÂAngeles: Recently Decreased Neurotoxicity. Journal of Alzheimer's Disease, 2021, 82, 307-316.	2.6	8

#	Article	IF	CITATIONS
127	Gene–Environment Interactions and Stochastic Variations in the Gero-Exposome. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1740-1747.	3.6	7
128	The janiform genetics of aging. Genetica, 1993, 91, 3-10.	1.1	6
129	Glial Model for Traumatic Brain Injury: Network Strain Field and Inflammation Induced by Repeated Mechanical Impacts In Vitro. Experimental Mechanics, 2018, 58, 125-135.	2.0	6
130	Supernumerary Ovarian Grafts in Aging C57BL/6J Mice Reveal Complexities in the Neuroendocrine Impairments of Acyclic Mice1. Biology of Reproduction, 1987, 36, 961-969.	2.7	5
131	Sex-Specific Aging in Flies, Worms, and Missing Great-Granddads. Cell, 2014, 156, 398-399.	28.9	5
132	Rust on the Brain from Microbleeds and Its Relevance to Alzheimer Studies: Invited Commentary on Cacciottolo Neurobiology of Aging, 2016. , 2016, 06, .		5
133	Are intestinal worms nature's anti-atherosclerosis vaccine?. European Heart Journal, 2018, 39, 1653-1653.	2.2	5
134	Atherosclerosis: A Longue Durée Approach. Global Heart, 2019, 9, 239.	2.3	5
135	How ubiquitous is aging in vertebrates?. Science, 2022, 376, 1384-1385.	12.6	5
136	The Tres Ventanas Mummies of <scp>P</scp> eru. Anatomical Record, 2015, 298, 1026-1035.	1.4	4
137	Air Pollution in Diseases of Aging. , 2018, , 83-130.		4
138	Alzheimer's disease: a biologist's perspectives. Science, 1985, 230, 1109-1109.	12.6	4
139	Diurnal variation in the proinflammatory activity of urban fine particulate matter (PM2.5) by in vitro assays. F1000Research, 2018, 7, 596.	1.6	4
140	Latent capacities for gametogenic cycling in the semelparous invertebrate Nereis Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11769-11770.	7.1	3
141	Blind cave salamanders age very slowly: A new member of Methuselah's Bestiary. BioEssays, 2011, 33, 27-29.	2.5	3
142	High prevalence of sternal foramina in indigenous Bolivians compared to Midwest Americans and indigenous North Americans (sternal foramina in indigenous Bolivians). Anatomical Science International, 2021, 96, 517-523.	1.0	3
143	New Questions About Steroids. Journal of the American Geriatrics Society, 1986, 34, 393-394.	2.6	2
144	Infrastructure for research on aging rodents: need for regional facilities to support transgenic studies on aging. Neurobiology of Aging, 1999, 20, 213-215.	3.1	2

#	Article	IF	CITATIONS
145	Lipids and lifespans: Constants and contradictions. Experimental Gerontology, 2008, 43, 716-717.	2.8	2
146	Supracentenarians The Centenarians of the Andes David Davies. BioScience, 1977, 27, 54-54.	4.9	1
147	Bernard Strehler: vivid recollections. Mechanisms of Ageing and Development, 2002, 123, 827-829.	4.6	1
148	Synapses everlasting: the passion of Carl Cotman. Neurochemical Research, 2003, 28, 1615-1616.	3.3	0
149	Herodotus on Diet and Longevity: How the Persians Fed on Dung and Lived to 80, While the Tall, Handsome Ethiopians Ate Boiled Meat and Lived Beyond 120. Journal of Aging, Humanities, and the Arts, 2009, 3, 86-96.	0.0	0
150	Susan L. Prescott, Origins: Early Life Solutions to the Modern Health Crisis. University of Western Australia Press, Crawley, Western Australia, 379 pages, ISBN: 9781742586700, 2015. Journal of Developmental Origins of Health and Disease, 2015, 6, 475-476.	1.4	0
151	Stem cells for all ages, yet hostage to aging. Stem Cell Investigation, 2016, 3, 11-11.	3.0	0
152	ENVIRONMENTAL DETERMINANTS OF AGING. Innovation in Aging, 2018, 2, 863-863.	0.1	0
153	NOVEL GAMMA-SECRETASE MODULATOR REGULATES APP PROCESSING AND INFLAMMATORY RESPONSES IN NPM-EXPOSED MICE. Innovation in Aging, 2019, 3, S93-S93.	0.1	0
154	CAENORHABDITIS ELEGANS AS A MODEL OF AIR POLLUTION TOXICITY DURING DEVELOPMENT AND LIFESPAN. Innovation in Aging, 2019, 3, S97-S97.	0.1	0
155	Early developmental exposure to air pollution increases the risk of Alzheimers disease and amyloid production: Studies in mouse and Caenorhabditis elegans. Alzheimer's and Dementia, 2020, 16, e043846.	0.8	0
156	Reduction of lipid peroxidase levels in EFAD mouse model. Alzheimer's and Dementia, 2020, 16, e044143.	0.8	0
157	Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. Advances in Alzheimer's Disease, 2021, , .	0.2	0
158	Recently decreased association of air pollution with cognitive impairment in a populationâ€based aging cohort and in a mouse model. Alzheimer's and Dementia, 2021, , .	0.8	0
159	FRAR course on laboratory approaches to aging. Theories of aging. Aging: Clinical and Experimental Research, 1993, 5, 277-89.	0.3	0
160	Third Annual Leonard Berg Symposium: final thoughts and future directions. Alzheimer Disease and Associated Disorders, 2003, 17 Suppl 2, S72.	1.3	0
161	Female vulnerability to the effects of smoking on health outcomes in older people. , 2020, 15, e0234015.		0
162	Female vulnerability to the effects of smoking on health outcomes in older people. , 2020, 15, e0234015.		0

#	Article	IF	CITATIONS
163	Female vulnerability to the effects of smoking on health outcomes in older people. , 2020, 15, e0234015.		0
164	Female vulnerability to the effects of smoking on health outcomes in older people. , 2020, 15, e0234015.		0
165	Female vulnerability to the effects of smoking on health outcomes in older people. , 2020, 15, e0234015.		0
166	Female vulnerability to the effects of smoking on health outcomes in older people. , 2020, 15, e0234015.		0
167	Inhibiting Bach1 enhanced the activation of Nrf2 signaling and the degradation of HNE in response to oxidative stress Alzheimer's and Dementia, 2021, 17 Suppl 3, e053235.	0.8	0
168	Reductions in ApoE and GPx4 highlight the Alzheimer's disease lipid raft vulnerability Alzheimer's and Dementia, 2021, 17 Suppl 3, e054511.	0.8	0