Koichi Tamaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040622/publications.pdf

Version: 2024-02-01

304743 454955 2,879 29 22 30 citations h-index g-index papers 32 32 32 2319 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Determination of unique power conversion efficiency of solar cell showing hysteresis in the I-V curve under various light intensities. Scientific Reports, 2017, 7, 11790.	3.3	38
2	Kinetics versus Energetics in Dye-Sensitized Solar Cells Based on an Ethynyl-Linked Porphyrin Heterodimer. Journal of Physical Chemistry C, 2014, 118, 1426-1435.	3.1	13
3	Dye-sensitized solar cells using ethynyl-linked porphyrin trimers. Physical Chemistry Chemical Physics, 2014, 16, 4551.	2.8	24
4	Ethynyl-linked push–pull porphyrin hetero-dimers for near-IR dye-sensitized solar cells: photovoltaic performances versus excited-state dynamics. Physical Chemistry Chemical Physics, 2012, 14, 16703.	2.8	32
5	N-fused carbazole–zinc porphyrin–free-base porphyrin triad for efficient near-IR dye-sensitized solar cells. Chemical Communications, 2011, 47, 4010.	4.1	102
6	Push-Pull Quinoid Dye for Dye Sensitized Solar Cell. ECS Transactions, 2009, 16, 65-72.	0.5	3
7	Meso-meso Linked Porphyrin Dimers for Dye-sensitized Solar Cells. Electrochemistry, 2009, 77, 206-209.	1.4	25
8	Fabrication of polymeric particles composed of two-dimensionally self-assembled nanoparticles by use of a microporous film as a template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 630-635.	4.7	7
9	Electronic Interactions between Inorganic Nanowires and Organic Electron Acceptors:  Drastic Changes in Optical Response and Molecular Vibration. Journal of Physical Chemistry C, 2007, 111, 1146-1149.	3.1	24
10	Phenalenyl-Based Highly Conductive Molecular Systems with Hydrogen-Bonded Networks: Synthesis, Physical Properties, and Crystal Structures of 1,3- and 1,6-Diazaphenalenes, and Their Protonated Salts and Charge-Transfer Complexes with TCNQ. Bulletin of the Chemical Society of Japan, 2006, 79, 894-913.	3.2	22
11	FABRICATION OF COMPOSITE STRUCTURE OF HONEYCOMB FILM AND LUMINESCENT NANOPARTICLES CONTAINING LANTHANIDE COMPLEXES. International Journal of Nanoscience, 2006, 05, 365-370.	0.7	1
12	A Molecular Tetrad Allowing Efficient Energy Storage for 1.6 s at 163 K. Journal of Physical Chemistry A, 2004, 108, 541-548.	2.5	169
13	Acceleration and deceleration of photoinduced electron transfer rates by an electric field in porphyrin-fullerene dyads. Chemical Physics Letters, 2003, 368, 230-235.	2.6	31
14	Electronic-spin and columnar crystal structures of stable 2,5,8-tri-tert-butyl-1,3-diazaphenalenyl radical. Polyhedron, 2003, 22, 2199-2204.	2.2	18
15	FABRICATIONS OF LUMINESCENT POLYMERIC NANOPARTICLES CONTAINING LANTHANIDE (III) ION COMPLEXES. International Journal of Nanoscience, 2002, 01, 533-537.	0.7	10
16	Linkage Dependent Charge Separation and Charge Recombination in Porphyrin-Pyromellitimide-Fullerene Triads. Journal of Physical Chemistry A, 2002, 106, 2803-2814.	2.5	43
17	Stepwise Charge Separation and Charge Recombination in Ferrocene-meso, meso-Linked Porphyrin Dimerâ°'Fullerene Triad. Journal of the American Chemical Society, 2002, 124, 5165-5174.	13.7	215
18	A New Trend in Phenalenyl Chemistry: A Persistent Neutral Radical, 2,5,8-Tri-tert-butyl-1,3-diazaphenalenyl, and the Excited Triplet State of the Gablesyn-Dimer in the Crystal of Column Motif. Angewandte Chemie - International Edition, 2002, 41, 1793-1796.	13.8	156

#	Article	lF	CITATION
19	Charge Separation in a Novel Artificial Photosynthetic Reaction Center Lives 380 ms. Journal of the American Chemical Society, 2001, 123, 6617-6628.	13.7	500
20	Modulating Charge Separation and Charge Recombination Dynamics in Porphyrinâ [*] Fullerene Linked Dyads and Triads:Â Marcus-Normal versus Inverted Region. Journal of the American Chemical Society, 2001, 123, 2607-2617.	13.7	537
21	An Extremely Small Reorganization Energy of Electron Transfer in Porphyrinâ^Fullerene Dyad. Journal of Physical Chemistry A, 2001, 105, 1750-1756.	2.5	275
22	Photosynthetic electron transfer using fullerenes as novel acceptors. Carbon, 2000, 38, 1599-1605.	10.3	76
23	Near infra-red emission of charge-transfer complexes of porphyrin–fullerene films. Chemical Physics Letters, 2000, 326, 344-350.	2.6	87
24	Chain Length Effect on the Structure and Photoelectrochemical Properties of Self-Assembled Monolayers of Porphyrins on Gold Electrodes. Journal of Physical Chemistry B, 2000, 104, 1253-1260.	2.6	196
25	Large Acceleration Effect of Photoinduced Electron Transfer in Porphyrinâ [^] Quinone Dyads with a Rigid Spacer Involving a Dihalosubstituted Three-Membered Ring. Journal of the American Chemical Society, 2000, 122, 2279-2288.	13.7	50
26	Synthesis and photophysical properties of a diporphyrin–fullerene triad. Chemical Communications, 1999, , 625-626.	4.1	44
27	Acceleration of Photoinduced Electron Transfer in Porphyrin-Linked C70. Chemistry Letters, 1999, 28, 227-228.	1.3	31
28	Chain Length Effect on Photocurrent from Polymethylene-Linked Porphyrins in Self-Assembled Monolayers. Langmuir, 1998, 14, 5335-5338.	3.5	105
29	Synthesis and properties of 1,6-diazaphenalenes and their charge-transfer complexes with tetracyanoquinodimethane. Tetrahedron Letters, 1997, 38, 4583-4586.	1.4	17