
Andreas Schramm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6039547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 2017, 541, 353-358.	13.7	882
2	Predominant archaea in marine sediments degrade detrital proteins. Nature, 2013, 496, 215-218.	13.7	526
3	Filamentous bacteria transport electrons over centimetre distances. Nature, 2012, 491, 218-221.	13.7	475
4	ldentification and Activities In Situ of <i>Nitrosospira</i> and <i>Nitrospira</i> spp. as Dominant Populations in a Nitrifying Fluidized Bed Reactor. Applied and Environmental Microbiology, 1998, 64, 3480-3485.	1.4	448
5	Microscale Distribution of Populations and Activities of <i>Nitrosospira</i> and <i>Nitrospira</i> spp. along a Macroscale Gradient in a Nitrifying Bioreactor: Quantification by In Situ Hybridization and the Use of Microsensors. Applied and Environmental Microbiology, 1999, 65, 3690-3696.	1.4	431
6	Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nature Communications, 2013, 4, 1428.	5.8	328
7	Community Structure and Activity Dynamics of Nitrifying Bacteria in a Phosphate-Removing Biofilm. Applied and Environmental Microbiology, 2001, 67, 1351-1362.	1.4	297
8	Hydrogenotrophic Methanogenesis by Moderately Acid-Tolerant Methanogens of a Methane-Emitting Acidic Peat. Applied and Environmental Microbiology, 2003, 69, 74-83.	1.4	251
9	Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environmental Microbiology, 2000, 2, 680-686.	1.8	239
10	The Earthworm Gut: an Ideal Habitat for Ingested N 2 O-Producing Microorganisms. Applied and Environmental Microbiology, 2003, 69, 1662-1669.	1.4	235
11	Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1255-1265.	0.8	222
12	Microbial community assembly and evolution in subseafloor sediment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2940-2945.	3.3	194
13	Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. Journal of Applied Microbiology, 2019, 126, 359-368.	1.4	186
14	Prokaryotic Community Structure and Sulfate Reducer Activity in Water from High-Temperature Oil Reservoirs with and without Nitrate Treatment. Applied and Environmental Microbiology, 2009, 75, 7086-7096.	1.4	177
15	Genome sequencing of a single cell of the widely distributed marine subsurface <i>Dehalococcoidia,</i> phylum <i>Chloroflexi</i> . ISME Journal, 2014, 8, 383-397.	4.4	172
16	<i>Archaea</i> Dominate the Ammonia-Oxidizing Community in the Rhizosphere of the Freshwater Macrophyte <i>Littorella uniflora</i> . Applied and Environmental Microbiology, 2008, 74, 3279-3283.	1.4	167
17	Effect of Lake Trophic Status and Rooted Macrophytes on Community Composition and Abundance of Ammonia-Oxidizing Prokaryotes in Freshwater Sediments. Applied and Environmental Microbiology, 2009, 75, 3127-3136.	1.4	151
18	A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema. Systematic and Applied Microbiology, 2016, 39, 297-306.	1.2	151

#	Article	IF	CITATIONS
19	Succession of cable bacteria and electric currents in marine sediment. ISME Journal, 2014, 8, 1314-1322.	4.4	134
20	On the Occurrence of Anoxic Microniches, Denitrification, and Sulfate Reduction in Aerated Activated Sludge. Applied and Environmental Microbiology, 1999, 65, 4189-4196.	1.4	127
21	Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm. FEMS Microbiology Ecology, 2008, 63, 192-204.	1.3	127
22	On the evolution and physiology of cable bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19116-19125.	3.3	127
23	Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium <i>Desulfurivibrio alkaliphilus</i> by Sulfide Oxidation with Nitrate. MBio, 2017, 8, .	1.8	122
24	In situ distribution and activity of nitrifying bacteria in freshwater sediment. Environmental Microbiology, 2003, 5, 798-803.	1.8	117
25	Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME Journal, 2014, 8, 1682-1690.	4.4	115
26	Simultaneous P and N removal in a sequencing batch biofilm reactor: insights from reactor- and microscale investigations. Water Research, 2002, 36, 501-509.	5.3	114
27	Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environmental Microbiology, 2002, 4, 713-720.	1.8	113
28	Cable Bacteria in Freshwater Sediments. Applied and Environmental Microbiology, 2015, 81, 6003-6011.	1.4	112
29	The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: an integrated study. Continental Shelf Research, 2000, 20, 1749-1769.	0.9	106
30	Long-distance electron transport in individual, living cable bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5786-5791.	3.3	104
31	Tolerance and Metabolic Response of Acetogenic Bacteria toward Oxygen. Applied and Environmental Microbiology, 2002, 68, 1005-1009.	1.4	102
32	Nitrous Oxide Reductase Genes (nosZ) of Denitrifying Microbial Populations in Soil and the Earthworm Gut Are Phylogenetically Similar. Applied and Environmental Microbiology, 2006, 72, 1019-1026.	1.4	100
33	N 2 O-Producing Microorganisms in the Gut of the Earthworm Aporrectodea caliginosa Are Indicative of Ingested Soil Bacteria. Applied and Environmental Microbiology, 2003, 69, 1655-1661.	1.4	90
34	Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. Systematic and Applied Microbiology, 2011, 34, 498-502.	1.2	90
35	Nitrous oxide emission by aquatic macrofauna. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4296-4300.	3.3	88
36	Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study. FEMS Microbiology Ecology, 2013, 86, 394-403.	1.3	86

#	Article	IF	CITATIONS
37	Process optimization by decoupled control of key microbial populations: Distribution of activity and abundance of polyphosphate-accumulating organisms and nitrifying populations in a full-scale IFAS-EBPR plant. Water Research, 2011, 45, 3845-3854.	5.3	80
38	Single-Cell Genome and Group-Specific <i>dsrAB</i> Sequencing Implicate Marine Members of the Class <i>Dehalococcoidia</i> (Phylum <i>Chloroflexi</i>) in Sulfur Cycling. MBio, 2016, 7, .	1.8	78
39	Monitoring Precursor 16S rRNAs of Acinetobacter spp. in Activated Sludge Wastewater Treatment Systems. Applied and Environmental Microbiology, 2000, 66, 2154-2165.	1.4	77
40	Identification of Bacteria Potentially Responsible for Oxic and Anoxic Sulfide Oxidation in Biofilters of a Recirculating Mariculture System. Applied and Environmental Microbiology, 2005, 71, 6134-6141.	1.4	70
41	Single-Cell Genomics Reveals a Diverse Metabolic Potential of Uncultivated Desulfatiglans-Related Deltaproteobacteria Widely Distributed in Marine Sediment. Frontiers in Microbiology, 2018, 9, 2038.	1.5	69
42	Acidovorax-like symbionts in the nephridia of earthworms. Environmental Microbiology, 2003, 5, 804-809.	1.8	63
43	Cable bacteria associated with longâ€distance electron transport in <scp>N</scp> ew <scp>E</scp> ngland salt marsh sediment. Environmental Microbiology Reports, 2015, 7, 175-179.	1.0	63
44	Micro-environments and mass transfer phenomena in biofilms studied with microsensors. Water Science and Technology, 1999, 39, 173-178.	1.2	59
45	In vitro production of necrotic enteritis toxin B, NetB, by netB-positive and netB-negative Clostridium perfringens originating from healthy and diseased broiler chickens. Veterinary Microbiology, 2010, 144, 231-235.	0.8	59
46	Marine Deep Biosphere Microbial Communities Assemble in Near-Surface Sediments in Aarhus Bay. Frontiers in Microbiology, 2019, 10, 758.	1.5	54
47	Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay. Applied and Environmental Microbiology, 2017, 83, .	1.4	53
48	Biofilm retention on surfaces with variable roughness and hydrophobicity. Biofouling, 2011, 27, 111-121.	0.8	52
49	Microbial N Transformations and N ₂ O Emission after Simulated Grassland Cultivation: Effects of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate (DMPP). Applied and Environmental Microbiology, 2017, 83, .	1.4	52
50	Shell biofilmâ€associated nitrous oxide production in marine molluscs: processes, precursors and relative importance. Environmental Microbiology, 2013, 15, 1943-1955.	1.8	51
51	In Situ Analysis of Structure and Activity of the Nitrifying Community in Biofilms, Aggregates, and Sediments. Geomicrobiology Journal, 2003, 20, 313-333.	1.0	47
52	Distribution and Rate of Microbial Processes in an Ammonia-Loaded Air Filter Biofilm. Applied and Environmental Microbiology, 2009, 75, 3705-3713.	1.4	47
53	Nitrogen transformations in stratified aquatic microbial ecosystems. Antonie Van Leeuwenhoek, 2006, 90, 361-375.	0.7	46
54	Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility. Systematic and Applied Microbiology, 2012, 35, 165-174.	1.2	46

#	Article	IF	CITATIONS
55	3,4-Dimethylpyrazole phosphate (DMPP) reduces activity of ammonia oxidizers without adverse effects on non-target soil microorganisms and functions. Applied Soil Ecology, 2016, 105, 67-75.	2.1	46
56	Motility of Electric Cable Bacteria. Applied and Environmental Microbiology, 2016, 82, 3816-3821.	1.4	46
57	Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation, 1998, 9, 159-167.	1.5	45
58	Endozoicomonas Are Specific, Facultative Symbionts of Sea Squirts. Frontiers in Microbiology, 2016, 7, 1042.	1.5	43
59	Shell Biofilm Nitrification and Gut Denitrification Contribute to Emission of Nitrous Oxide by the Invasive Freshwater Mussel Dreissena polymorpha (Zebra Mussel). Applied and Environmental Microbiology, 2012, 78, 4505-4509.	1.4	42
60	Nitrous oxide production associated with coastal marine invertebrates. Marine Ecology - Progress Series, 2010, 415, 1-9.	0.9	42
61	Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME Journal, 2020, 14, 1233-1246.	4.4	41
62	Ant-mediated effects on spruce litter decomposition, solution chemistry, and microbial activity. Soil Biology and Biochemistry, 2006, 38, 561-572.	4.2	39
63	The novel bacterial phylum Calditrichaeota is diverse, widespread and abundant in marine sediments and has the capacity to degrade detrital proteins. Environmental Microbiology Reports, 2017, 9, 397-403.	1.0	39
64	Oxygen Distribution and Potential Ammonia Oxidation in Floating, Liquid Manure Crusts. Journal of Environmental Quality, 2010, 39, 1813-1820.	1.0	38
65	Micro-environments and mass transfer phenomena in biofilms studied with microsensors. Water Science and Technology, 1999, 39, 173.	1.2	37
66	Transient bottom water oxygenation creates a niche for cable bacteria in longâ€ŧerm anoxic sediments of the Eastern Gotland Basin. Environmental Microbiology, 2018, 20, 3031-3041.	1.8	37
67	Geminicoccus roseus gen. nov., sp. nov., an aerobic phototrophic Alphaproteobacterium isolated from a marine aquaculture biofilter. Systematic and Applied Microbiology, 2007, 30, 581-586.	1.2	36
68	Greenhouse Gas Microbiology in Wet and Dry Straw Crust Covering Pig Slurry. Journal of Environmental Quality, 2009, 38, 1311-1319.	1.0	36
69	Dynamic microbial response of sulfidogenic wastewater biofilm to nitrate. Applied Microbiology and Biotechnology, 2011, 91, 1647-1657.	1.7	36
70	Diversity and host specificity of the <i>Verminephrobacter</i> –earthworm symbiosis. Environmental Microbiology, 2010, 12, 2142-2151.	1.8	32
71	Bacterial community structure of a full-scale biofilter treating pig house exhaust air. Systematic and Applied Microbiology, 2011, 34, 344-352.	1.2	32
72	Cable bacteria at oxygenâ€releasing roots of aquatic plants: a widespread and diverse plant–microbe association. New Phytologist, 2021, 232, 2138-2151.	3.5	32

#	Article	IF	CITATIONS
73	Microbial community diversity and composition varies with habitat characteristics and biofilm function in macrophyteâ€rich streams. Oikos, 2017, 126, 398-409.	1.2	30
74	Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment. Systematic and Applied Microbiology, 2014, 37, 51-59.	1.2	29
75	Mitigating N2O emissions from clover residues by 3,4-dimethylpyrazole phosphate (DMPP) without adverse effects on the earthworm Lumbricus terrestris. Soil Biology and Biochemistry, 2017, 104, 95-107.	4.2	29
76	High quality draft genome sequence of Janthinobacterium psychrotolerans sp. nov., isolated from a frozen freshwater pond. Standards in Genomic Sciences, 2017, 12, 8.	1.5	28
77	Oxygen consumption of individual cable bacteria. Science Advances, 2021, 7, .	4.7	28
78	Description of Endozoicomonas ascidiicola sp. nov., isolated from Scandinavian ascidians. Systematic and Applied Microbiology, 2016, 39, 313-318.	1.2	27
79	Earthworm Gut Microbial Biomes: Their Importance to Soil Microorganisms, Denitrification, and the Terrestrial Production of the Greenhouse Gas N2O. , 2006, , 65-87.		25
80	Beneficial Effect of <i>Verminephrobacter</i> Nephridial Symbionts on the Fitness of the Earthworm <i>Aporrectodea tuberculata</i> . Applied and Environmental Microbiology, 2010, 76, 4738-4743.	1.4	25
81	Purifying Selection and Molecular Adaptation in the Genome of Verminephrobacter, the Heritable Symbiotic Bacteria of Earthworms. Genome Biology and Evolution, 2012, 4, 307-315.	1.1	25
82	Detection of denitrification genes by <i>in situ</i> rolling circle amplificationâ€fluorescence <i>in situ</i> hybridization to link metabolic potential with identity inside bacterial cells. Environmental Microbiology, 2010, 12, 2508-2517.	1.8	24
83	The earthwormââ,¬â€Verminephrobacter symbiosis: an emerging experimental system to study extracellular symbiosis. Frontiers in Microbiology, 2014, 5, 128.	1.5	23
84	Lactovum miscens gen. nov., sp. nov., an aerotolerant, psychrotolerant, mixed-fermentative anaerobe from acidic forest soil. Research in Microbiology, 2004, 155, 847-854.	1.0	22
85	Ammoniaâ€oxidizing B acteria of the N itrosospira cluster 1 dominate over ammoniaâ€oxidizing A rchaea in oligotrophic surface sediments near the S outh A tlantic G yre. Environmental Microbiology Reports, 2015, 7, 404-413.	1.0	22
86	Biogeochemical functioning of the Baltic Sea. Earth System Dynamics, 2022, 13, 633-685.	2.7	22
87	Higher nitrate-reducer diversity in macrophyte-colonized compared to unvegetated freshwater sediment. Systematic and Applied Microbiology, 2012, 35, 465-472.	1.2	21
88	Respiratory Kinetics of Marine Bacteria Exposed to Decreasing Oxygen Concentrations. Applied and Environmental Microbiology, 2016, 82, 1412-1422.	1.4	21
89	Dissimilatory nitrate reduction by a freshwater cable bacterium. ISME Journal, 2022, 16, 50-57.	4.4	21
90	Temporal variation of nitrification rates in experimental freshwater sediments enriched with ammonia or nitrite. FEMS Microbiology Ecology, 2003, 46, 63-71.	1.3	20

#	Article	IF	CITATIONS
91	Direct Nitrous Oxide Emission from the Aquacultured Pacific White Shrimp (Litopenaeus vannamei). Applied and Environmental Microbiology, 2016, 82, 4028-4034.	1.4	20
92	Microbiomes and Specific Symbionts of Social Spiders: Compositional Patterns in Host Species, Populations, and Nests. Frontiers in Microbiology, 2020, 11, 1845.	1.5	20
93	Characterization of Microbial Communities of Biofilters by Phospholipid Fatty Acid Analysis and rRNA Targeted Oligonucleotide Probes. Systematic and Applied Microbiology, 1999, 22, 626-634.	1.2	19
94	The effect of feeding a commercial essential oil product on Clostridium perfringens numbers in the intestine of broiler chickens measured by real-time PCR targeting the α-toxin-encoding gene (plc). Animal Feed Science and Technology, 2010, 157, 181-189.	1.1	19
95	A Novel Extracellular Gut Symbiont in the Marine Worm Priapulus caudatus (Priapulida) Reveals an Alphaproteobacterial Symbiont Clade of the Ecdysozoa. Frontiers in Microbiology, 2016, 7, 539.	1.5	19
96	Visualizing the dental biofilm matrix by means of fluorescence lectin-binding analysis. Journal of Oral Microbiology, 2017, 9, 1345581.	1.2	19
97	Seasonal Methane Oxidation Potential in Manure Crusts. Applied and Environmental Microbiology, 2013, 79, 407-410.	1.4	18
98	Fluorescence in situ hybridization (FISH) detection of nitrite reductase transcripts (nirS mRNA) in Pseudomonas stutzeri biofilms relative to a microscale oxygen gradient. Systematic and Applied Microbiology, 2012, 35, 513-517.	1.2	17
99	Spatial separation of ribosomes and DNA in Asgard archaeal cells. ISME Journal, 2022, 16, 606-610.	4.4	17
100	Structure and function of a nitrifying biofilm as determined by microelectrodes and fluorescent oligonucleotide probes. Water Science and Technology, 1997, 36, 263.	1.2	16
101	Two Types of Endosymbiotic Bacteria in the Enigmatic Marine Worm <i>Xenoturbella bocki</i> . Applied and Environmental Microbiology, 2010, 76, 2657-2662.	1.4	16
102	Effect of nitrate on sulfur transformations in sulfidogenic sludge of a marine aquaculture biofilter. FEMS Microbiology Ecology, 2010, 72, 476-484.	1.3	16
103	Regulation of nitrous oxide emission associated with benthic invertebrates. Freshwater Biology, 2010, 55, 1647-1657.	1.2	16
104	Control of nitrous oxide emission from <i>Chironomus plumosus</i> larvae by nitrate and temperature. Limnology and Oceanography, 2010, 55, 872-884.	1.6	16
105	Distinct effects of the nephridial symbionts Verminephrobacter and Candidatus Nephrothrix on reproduction and maturation of its earthworm host Eisenia andrei. FEMS Microbiology Ecology, 2018, 94, .	1.3	16
106	How to grow your cable bacteria: Establishment of a stable single-strain culture in sediment and proposal of Candidatus Electronema aureum GS. Systematic and Applied Microbiology, 2021, 44, 126236.	1.2	16
107	Verminephrobacter aporrectodeae sp. nov. subsp. tuberculatae and subsp. caliginosae, the specific nephridial symbionts of the earthworms Aporrectodea tuberculata and A. caliginosa. Antonie Van Leeuwenhoek, 2012, 101, 507-514.	0.7	15
108	Evolution of the tripartite symbiosis between earthworms, Verminephrobacter and Flexibacter-like bacteria. Frontiers in Microbiology, 2015, 6, 529.	1.5	15

#	Article	IF	CITATIONS
109	Male spiders control offspring sex ratio through greater production of female-determining sperm. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172887.	1.2	15
110	Antimicrobial Compounds in the Volatilome of Social Spider Communities. Frontiers in Microbiology, 2021, 12, 700693.	1.5	15
111	Single-cell amplified genomes of two uncultivated members of the deltaproteobacterial SEEP-SRB1 clade, isolated from marine sediment. Marine Genomics, 2019, 46, 66-69.	0.4	14
112	Anaerobic processes in activated sludge. Water Science and Technology, 1998, 37, 605-608.	1.2	14
113	KINETCIS AND NITRIFYING POPULATIONS IN NITROGEN REMOVAL PROCESSES AT A FULL-SCALE INTEGRATED FIXED-FILM ACTIVATED SLUDGE (IFAS) PLANT. Proceedings of the Water Environment Federation, 2007, 2007, 3099-3119.	0.0	13
114	Sequence variation in the $\hat{l}\pm$ -toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens. Veterinary Microbiology, 2009, 136, 293-299.	0.8	13
115	Title is missing!. Hydrobiologia, 2002, 469, 165-178.	1.0	12
116	Flow Cytometry-Assisted Cloning of Specific Sequence Motifs from Complex 16S rRNA Gene Libraries. Applied and Environmental Microbiology, 2004, 70, 7550-7554.	1.4	12
117	Detection and persistence of fecal Bacteroidales as water quality indicators in unchlorinated drinking water. Systematic and Applied Microbiology, 2009, 32, 362-370.	1.2	12
118	Gene expression of terminal oxidases in two marine bacterial strains exposed to nanomolar oxygen concentrations. FEMS Microbiology Ecology, 2018, 94, .	1.3	12
119	The bacterial and fungal nest microbiomes in populations of the social spider Stegodyphus dumicola. Systematic and Applied Microbiology, 2021, 44, 126222.	1.2	12
120	Anaerobic processes in activated sludge. Water Science and Technology, 1998, 37, 605.	1.2	11
121	Intracellular nitrate storage by diatoms can be an important nitrogen pool in freshwater and marine ecosystems. Communications Earth & Environment, 2022, 3, .	2.6	11
122	Nitrifying Community Analysis in a Single Submerged Attachedâ€Growth Bioreactor for Treatment of Highâ€Ammonia Waste Stream. Water Environment Research, 2007, 79, 2510-2518.	1.3	10
123	Biparental transmission of Verminephrobacter symbionts in the earthworm Aporrectodea tuberculata (Lumbricidae). FEMS Microbiology Ecology, 2017, 93, .	1.3	10
124	Control of nitrous oxide emission from Chironomus plumosus larvae by nitrate and temperature. Limnology and Oceanography, 2010, 55, 872-884.	1.6	10
125	Genomic insights into the Agromyces-like symbiont of earthworms and its distribution among host species. FEMS Microbiology Ecology, 2018, 94, .	1.3	9
126	Phyllobacterium calauticae sp. nov. isolated from a microaerophilic veil transversed by cable bacteria in freshwater sediment. Antonie Van Leeuwenhoek, 2021, 114, 1877-1887.	0.7	8

#	Article	IF	CITATIONS
127	Pili for nanowires. Nature Microbiology, 2021, 6, 1347-1348.	5.9	8
128	Dynamics of plc gene transcription and α-toxin production during growth of Clostridium perfringens strains with contrasting α-toxin production. Veterinary Microbiology, 2009, 139, 202-206.	0.8	7
129	In situ structure/function studies in wastewater treatment systems. Water Science and Technology, 1998, 37, 413-416.	1.2	7
130	Temporal and spatial microbiome dynamics across natural populations of the social spider <i>Stegodyphus dumicola</i> . FEMS Microbiology Ecology, 2022, 98, .	1.3	7
131	Triculamin: An Unusual Lasso Peptide with Potent Antimycobacterial Activity. Journal of Natural Products, 2022, 85, 1514-1521.	1.5	7
132	The myth of antibiotic spider silk. IScience, 2021, 24, 103125.	1.9	6
133	Microsensors for the Study of Microenvironments and Processes in the Intestine of Invertebrates. , 2006, , 463-473.		5
134	The importance of environmental microbes for Drosophila melanogaster during seasonal macronutrient variability. Scientific Reports, 2021, 11, 18850.	1.6	5
135	Host Plant Availability and Nest-Site Selection of the Social Spider Stegodyphus dumicola Pocock, 1898 (Eresidae). Insects, 2022, 13, 30.	1.0	5
136	Draft genome sequence of Bacillus azotoformans MEV2011, a (Co-) denitrifying strain unable to grow with oxygen. Standards in Genomic Sciences, 2014, 9, 23.	1.5	4
137	Draft genome sequence of Bacillus azotoformans MEV2011, a (Co-) denitrifying strain unable to grow with oxygen. Standards in Genomic Sciences, 2015, 10, 4.	1.5	4
138	Tracing long-distance electron transfer and cable bacteria in freshwater sediments by agar pillar gradient columns. FEMS Microbiology Ecology, 2022, 98, .	1.3	4
139	Earthworm ecology affects the population structure of their Verminephrobacter symbionts. Systematic and Applied Microbiology, 2016, 39, 170-172.	1.2	3
140	Intracellular nitrate in sediments of an oxygen-deficient marine basin is linked to pelagic diatoms. FEMS Microbiology Ecology, 2018, 94, .	1.3	3
141	An antimicrobial Staphylococcus sciuri with broad temperature and salt spectrum isolated from the surface of the African social spider, Stegodyphus dumicola. Antonie Van Leeuwenhoek, 2021, 114, 325-335.	0.7	2
142	TREATMENT OF HIGH-AMMONIA WASTE STREAM USING A SINGLE SUBMERGED ATTACHED GROWTH BIOREACTOR - PERFORMANCE AND NITRIFYING COMMUNITY ANALYSIS. Proceedings of the Water Environment Federation, 2007, 2007, 437-454.	0.0	1
143	Metabolite Profiling of the Social Spider Stegodyphus dumicola Along a Climate Gradient. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	1
144	Draft Genome Sequence of Bacillus subtilis SB-14, an Antimicrobially Active Isolate from Namibian Social Spiders (Stegodyphus dumicola). Microbiology Resource Announcements, 2019, 8, .	0.3	0

0

#	Article	IF	CITATIONS
145	Functional and structural response of ammonia and VOC converting biofilm to variations in air loading and water management. , 2010, , 109-109.		0

Regulation of ammonia oxidation in biotrickling air filters. , 2010, , 111-112.