
Arif Yurdagul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6038909/publications.pdf Version: 2024-02-01

Δριε Υμρηλομι

#	Article	IF	CITATIONS
1	Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nature Protocols, 2022, 17, 748-780.	12.0	52
2	Dual-Fluorescence Assay. Methods in Molecular Biology, 2022, 2419, 293-299.	0.9	0
3	Assessing in Atherosclerotic Lesions Methods in Molecular Biology, 2022, 2419, 561-567.	0.9	1
4	Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nature Metabolism, 2022, 4, 444-457.	11.9	56
5	Crosstalk Between Macrophages and Vascular Smooth Muscle Cells in Atherosclerotic Plaque Stability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 372-380.	2.4	30
6	Metabolic Consequences of Efferocytosis and Its Impact on Atherosclerosis. Immunometabolism, 2021, 3, .	1.6	15
7	ODC (Ornithine Decarboxylase)-Dependent Putrescine Synthesis Maintains MerTK (MER) Tj ETQq1 1 0.784314 Biology, 2021, 41, e144-e159.	l rgBT /Over 2.4	lock 10 Tf 50 23
8	Allosteric MAPKAPK2 inhibitors improve plaque stability in advanced atherosclerosis. PLoS ONE, 2021, 16, e0246600.	2.5	1
9	Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metabolism, 2021, 33, 2445-2463.e8.	16.2	98
10	Efferocytosis in health and disease. Nature Reviews Immunology, 2020, 20, 254-267.	22.7	461
11	siRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice. Science Translational Medicine, 2020, 12, .	12.4	132
12	Macrophage Metabolism of Apoptotic Cell-Derived Arginine Promotes Continual Efferocytosis and Resolution of Injury. Cell Metabolism, 2020, 31, 518-533.e10.	16.2	235
13	Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nature Reviews Cardiology, 2019, 16, 389-406.	13.7	684
14	An ATF6-tPA pathway in hepatocytes contributes to systemic fibrinolysis and is repressed by DACH1. Blood, 2019, 133, 743-753.	1.4	23
15	Regulatory T Cells Promote Macrophage Efferocytosis during Inflammation Resolution. Immunity, 2018, 49, 666-677.e6.	14.3	270
16	Endothelial FN (Fibronectin) Deposition by α5β1 Integrins Drives Atherogenic Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2601-2614.	2.4	59
17	EphA2 stimulates VCAM-1 expression through calcium-dependent NFAT1 activity. Cellular Signalling, 2018, 49, 30-38.	3.6	16
18	Cystathionine Î ³ -Lyase Modulates Flow-Dependent Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2126-2136.	2.4	46

ARIF YURDAGUL

#	Article	IF	CITATIONS
19	EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis. Circulation, 2017, 136, 566-582.	1.6	50
20	Mitochondrial Fission Promotes the Continued Clearance of Apoptotic Cells by Macrophages. Cell, 2017, 171, 331-345.e22.	28.9	249
21	The Type 1 Diabetes–Resistance Locus <i>Idd22</i> Controls Trafficking of Autoreactive CTLs into the Pancreatic Islets of NOD Mice. Journal of Immunology, 2017, 199, 3991-4000.	0.8	11
22	Mechanisms and Consequences of Defective Efferocytosis in Atherosclerosis. Frontiers in Cardiovascular Medicine, 2017, 4, 86.	2.4	193
23	The arterial microenvironment: the where and why of atherosclerosis. Biochemical Journal, 2016, 473, 1281-1295.	3.7	138
24	Oxidized LDL induces FAK-dependent RSK signaling to drive NF-κB activation and VCAM-1 expression. Journal of Cell Science, 2016, 129, 1580-91.	2.0	45
25	Blood Brothers: Hemodynamics and Cell–Matrix Interactions in Endothelial Function. Antioxidants and Redox Signaling, 2016, 25, 415-434.	5.4	29
26	Recruitment of the adaptor protein Nck to PECAM-1 couples oxidative stress to canonical NF-κB signaling and inflammation. Science Signaling, 2015, 8, ra20.	3.6	25
27	αvβ3 Integrins Mediate Flow-Induced NF-κB Activation, Proinflammatory Gene Expression, and Early Atherogenic Inflammation. American Journal of Pathology, 2015, 185, 2575-2589.	3.8	72
28	Flow patterns regulate hyperglycemia-induced subendothelial matrix remodeling during early atherogenesis. Atherosclerosis, 2014, 232, 277-284.	0.8	36
29	α5β1 Integrin Signaling Mediates Oxidized Low-Density Lipoprotein–Induced Inflammation and Early Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1362-1373.	2.4	138
30	Resveratrol promotes endothelial cell wound healing under laminar shear stress through an estrogen receptor-α-dependent pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H797-H806.	3.2	31
31	Abstract 282: α5ß1 Integrin Signaling Through Focal Adhesion Kinase Mediates Oxidized LDL-Induced Endothelial Proinflammatory Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0
32	Altered nitric oxide production mediates matrix-specific PAK2 and NF-κB activation by flow. Molecular Biology of the Cell, 2013, 24, 398-408.	2.1	45
33	Hyperglycemia and Endothelial Dysfunction in Atherosclerosis: Lessons from Type 1 Diabetes. International Journal of Vascular Medicine, 2012, 2012, 1-19.	1.0	119
34	EphA2 Activation Promotes the Endothelial Cell Inflammatory Response. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 686-695.	2.4	81
35	Polyphenolâ€eluting stent reduces restenosis and promotes vascular healing in a rat model of arterial angioplasty and stenting. FASEB Journal, 2011, 25, 1089.7.	0.5	0
36	Matrix-Specific Protein Kinase A Signaling Regulates p21-Activated Kinase Activation by Flow in Endothelial Cells. Circulation Research, 2010, 106, 1394-1403.	4.5	54

#	Article	IF	CITATIONS
37	Molecular Mechanisms of Collagen Isotype-Specific Modulation of Smooth Muscle Cell Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 225-231.	2.4	94