List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6037904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Necroptosis in chronic obstructive pulmonary disease, a smoking gun?. Immunology and Cell Biology, 2022, 100, 79-82.	1.0	1
2	Interferon-Î ³ primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity, 2022, 55, 423-441.e9.	6.6	61
3	The Lck inhibitor, AMG-47a, blocks necroptosis and implicates RIPK1 in signalling downstream of MLKL. Cell Death and Disease, 2022, 13, 291.	2.7	10
4	Development of NanoLuc-targeting protein degraders and a universal reporter system to benchmark tag-targeted degradation platforms. Nature Communications, 2022, 13, 2073.	5.8	11
5	Tankyrase-mediated ADP-ribosylation is a regulator of TNF-induced death. Science Advances, 2022, 8, eabh2332.	4.7	9
6	Langerhans cells are an essential cellular intermediary in chronic dermatitis. Cell Reports, 2022, 39, 110922.	2.9	5
7	Loss of NFâ€kB1 and câ€Rel accelerates oral carcinogenesis in mice. Oral Diseases, 2021, 27, 168-172.	1.5	4
8	The necroptotic cell death pathway operates in megakaryocytes, but not in platelet synthesis. Cell Death and Disease, 2021, 12, 133.	2.7	8
9	Dual roles for LUBAC signaling in thymic epithelial cell development and survival. Cell Death and Differentiation, 2021, 28, 2946-2956.	5.0	4
10	NF-κB and Pancreatic Cancer; Chapter and Verse. Cancers, 2021, 13, 4510.	1.7	20
11	HOIP limits antiâ€ŧumor immunity by protecting against combined TNF and IFNâ€gammaâ€induced apoptosis. EMBO Reports, 2021, 22, e53391.	2.0	21
12	Oligomerizationâ€driven MLKL ubiquitylation antagonizes necroptosis. EMBO Journal, 2021, 40, e103718.	3.5	39
13	Unleashing TNF cytotoxicity to enhance cancer immunotherapy. Trends in Immunology, 2021, 42, 1128-1142.	2.9	28
14	Transplantable programmed death ligand 1 expressing gastroids from gastric cancer prone Nfkb1â^'/â^' mice. Cell Death and Disease, 2021, 12, 1091.	2.7	2
15	Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature, 2020, 577, 103-108.	13.7	198
16	A regulatory region on <scp>RIPK</scp> 2 is required for <scp>XIAP</scp> binding and <scp>NOD</scp> signaling activity. EMBO Reports, 2020, 21, e50400.	2.0	9
17	Clinical MDR1 inhibitors enhance Smac-mimetic bioavailability to kill murine LSCs and improve survival in AML models. Blood Advances, 2020, 4, 5062-5077.	2.5	6
18	Potent Inhibition of Necroptosis by Simultaneously Targeting Multiple Effectors of the Pathway. ACS Chemical Biology, 2020, 15, 2702-2713.	1.6	22

#	Article	IF	CITATIONS
19	Combinatorial Treatment of Birinapant and Zosuquidar Enhances Effective Control of HBV Replication In Vivo. Viruses, 2020, 12, 901.	1.5	7
20	MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nature Communications, 2020, 11, 3151.	5.8	194
21	A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction. Nature Communications, 2020, 11, 3150.	5.8	75
22	Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nature Reviews Rheumatology, 2020, 16, 496-513.	3.5	74
23	Future Therapeutic Directions for Smac-Mimetics. Cells, 2020, 9, 406.	1.8	92
24	The Immuno-Modulatory Effects of Inhibitor of Apoptosis Protein Antagonists in Cancer Immunotherapy. Cells, 2020, 9, 207.	1.8	38
25	Targeting triple-negative breast cancers with the Smac-mimetic birinapant. Cell Death and Differentiation, 2020, 27, 2768-2780.	5.0	31
26	Targeting the Extrinsic Pathway of Hepatocyte Apoptosis Promotes Clearance of Plasmodium Liver Infection. Cell Reports, 2020, 30, 4343-4354.e4.	2.9	24
27	An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Research, 2020, 9, 653.	0.8	62
28	Addendum: A FRET biosensor for necroptosis uncovers two different modes of the release of DAMPs. Nature Communications, 2019, 10, 1923.	5.8	2
29	RIPK1 prevents TRADD-driven, but TNFR1 independent, apoptosis during development. Cell Death and Differentiation, 2019, 26, 877-889.	5.0	46
30	RIPK1 and Caspase-8 Ensure Chromosome Stability Independently of Their Role in Cell Death and Inflammation. Molecular Cell, 2019, 73, 413-428.e7.	4.5	50
31	Antagonism of IAPs Enhances CAR T-cell Efficacy. Cancer Immunology Research, 2019, 7, 183-192.	1.6	68
32	Combined PPARÎ ³ Activation and XIAP Inhibition as a Potential Therapeutic Strategy for Ovarian Granulosa Cell Tumors. Molecular Cancer Therapeutics, 2019, 18, 364-375.	1.9	15
33	Targeting XIAP and PPARÎ ³ in Granulosa Cell Tumors Alters Metabolic Signaling. Journal of Proteome Research, 2019, 18, 1691-1702.	1.8	8
34	LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature, 2018, 557, 112-117.	13.7	168
35	Ubiquitin-Mediated Regulation of RIPK1 Kinase Activity Independent of IKK and MK2. Molecular Cell, 2018, 69, 566-580.e5.	4.5	102
36	NOD1 is required for <i>Helicobacter pylori</i> induction of IL-33 responses in gastric epithelial cells. Cellular Microbiology, 2018, 20, e12826.	1.1	26

#	Article	IF	CITATIONS
37	IAPs Regulate Distinct Innate Immune Pathways to Co-ordinate the Response to Bacterial Peptidoglycans. Cell Reports, 2018, 22, 1496-1508.	2.9	31
38	The brace helices of MLKL mediate interdomain communication and oligomerisation to regulate cell death by necroptosis. Cell Death and Differentiation, 2018, 25, 1567-1580.	5.0	66
39	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
40	Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted. Cell Death and Differentiation, 2018, 25, 951-965.	5.0	72
41	The Mitochondrial Apoptotic Effectors BAX/BAK Activate Caspase-3 and -7 to Trigger NLRP3 Inflammasome and Caspase-8 Driven IL-11 ² Activation. Cell Reports, 2018, 25, 2339-2353.e4.	2.9	164
42	LUBAC prevents lethal dermatitis by inhibiting cell death induced by TNF, TRAIL and CD95L. Nature Communications, 2018, 9, 3910.	5.8	81
43	A FRET biosensor for necroptosis uncovers two different modes of the release of DAMPs. Nature Communications, 2018, 9, 4457.	5.8	65
44	Tumor immune evasion arises through loss of TNF sensitivity. Science Immunology, 2018, 3, .	5.6	244
45	The Walrus and the Carpenter: Complex Regulation of Tumor Immunity in Colorectal Cancer. Cell, 2018, 174, 14-16.	13.5	70
46	Methods for Studying TNF-Mediated Necroptosis in Cultured Cells. Methods in Molecular Biology, 2018, 1857, 53-61.	0.4	6
47	Conformational switching of the pseudokinase domain promotes human MLKL tetramerization and cell death by necroptosis. Nature Communications, 2018, 9, 2422.	5.8	154
48	Combination of IAP antagonist and IFNÎ ³ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death and Differentiation, 2017, 24, 481-491.	5.0	43
49	EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nature Microbiology, 2017, 2, 16258.	5.9	141
50	Jekyll & Hyde: The Other Life of the Death Ligand TRAIL. Molecular Cell, 2017, 65, 585-587.	4.5	1
51	â€~Did He Who Made the Lamb Make Thee?' New Developments in Treating the â€~Fearful Symmetry' of Myeloid Leukemia. Trends in Molecular Medicine, 2017, 23, 264-281.	Acute	4
52	Engineered Exosomes as Vehicles for Biologically Active Proteins. Molecular Therapy, 2017, 25, 1269-1278.	3.7	244
53	MK2 Phosphorylates RIPK1 to Prevent TNF-Induced Cell Death. Molecular Cell, 2017, 66, 698-710.e5.	4.5	242
54	A potent clinical stage Smac mimetic antagonizes cellular inhibitors of apoptosis and promotes hepatitis B virus clearance in vivo. Journal of Hepatology, 2017, 66, S263.	1.8	0

#	Article	IF	CITATIONS
55	The small molecule that packs a punch: ubiquitin-mediated regulation of RIPK1/FADD/caspase-8 complexes. Cell Death and Differentiation, 2017, 24, 1196-1204.	5.0	22
56	The TNF Receptor Superfamily-NF-κB Axis Is Critical to Maintain Effector Regulatory T Cells in Lymphoid and Non-lymphoid Tissues. Cell Reports, 2017, 20, 2906-2920.	2.9	115
57	XIAP Loss Triggers RIPK3- and Caspase-8-Driven IL-1β Activation and Cell Death as a Consequence of TLR-MyD88-Induced cIAP1-TRAF2 Degradation. Cell Reports, 2017, 20, 668-682.	2.9	112
58	Inhibitor of Apoptosis Proteins (IAPs) Limit RIPK1-Mediated Skin Inflammation. Journal of Investigative Dermatology, 2017, 137, 2371-2379.	0.3	32
59	PD-L1 and IAPs co-operate to protect tumors from cytotoxic lymphocyte-derived TNF. Cell Death and Differentiation, 2017, 24, 1705-1716.	5.0	64
60	Inhibitor of Apoptosis Protein-1 Regulates Tumor Necrosis Factor–Mediated Destruction of Intestinal Epithelial Cells. Gastroenterology, 2017, 152, 867-879.	0.6	54
61	IAPs and Cell Death. Current Topics in Microbiology and Immunology, 2016, 403, 95-117.	0.7	28
62	In the Midst of Life—Cell Death: What Is It, What Is It Good for, and How to Study It. Cold Spring Harbor Protocols, 2016, 2016, pdb.top070508.	0.2	1
63	The intersection of cell death and inflammasome activation. Cellular and Molecular Life Sciences, 2016, 73, 2349-2367.	2.4	139
64	Killing Lymphoma with Smac-Mimetics: As Easy as ABC?. Cancer Cell, 2016, 29, 425-427.	7.7	1
65	The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis. Immunity, 2016, 45, 513-526.	6.6	191
66	<scp>SPATA</scp> 2 – Keeping the <scp>TNF</scp> signal short and sweet. EMBO Journal, 2016, 35, 1848-1850.	3.5	6
67	Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis. Nature Communications, 2016, 7, 13353.	5.8	47
68	The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Science Translational Medicine, 2016, 8, 339ra69.	5.8	140
69	Hepatitis Câ€induced hepatocyte apoptosis following liver transplantation is enhanced by immunosuppressive agents. Journal of Viral Hepatitis, 2016, 23, 730-743.	1.0	5
70	Evolutionary divergence of the necroptosis effector MLKL. Cell Death and Differentiation, 2016, 23, 1185-1197.	5.0	93
71	Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics. Cancer Cell, 2016, 29, 145-158.	7.7	93
72	The importance of being chaperoned: HSP90 and necroptosis. Cell Chemical Biology, 2016, 23, 205-207.	2.5	16

#	Article	IF	CITATIONS
73	HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death and Disease, 2016, 7, e2051-e2051.	2.7	123
74	CDDiscovery. Cell Death Discovery, 2015, 1, 15002.	2.0	0
75	Response to Heard etÂal. EMBO Journal, 2015, 34, 2396-2397.	3.5	5
76	Questions & Controversies. Cell Death Discovery, 2015, 1, 15039.	2.0	0
77	Fight or flight. Current Opinion in Hematology, 2015, 22, 293-301.	1.2	29
78	Effect of Immunosuppressive Agents on Hepatocyte Apoptosis Post-Liver Transplantation. PLoS ONE, 2015, 10, e0138522.	1.1	15
79	Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop. Biochemical Journal, 2015, 471, 255-265.	1.7	91
80	RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nature Communications, 2015, 6, 6282.	5.8	514
81	IAP gene deletion and conditional knockout models. Seminars in Cell and Developmental Biology, 2015, 39, 97-105.	2.3	32
82	The diverse role of RIP kinases in necroptosis and inflammation. Nature Immunology, 2015, 16, 689-697.	7.0	399
83	A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production. Nature Communications, 2015, 6, 6442.	5.8	112
84	Cellular inhibitor of apoptosis proteins prevent clearance of hepatitis B virus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5797-5802.	3.3	90
85	Eliminating hepatitis B by antagonizing cellular inhibitors of apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5803-5808.	3.3	118
86	Nedd4 Family Interacting Protein 1 (Ndfip1) Is Required for Ubiquitination and Nuclear Trafficking of BRCA1-associated ATM Activator 1 (BRAT1) during the DNA Damage Response. Journal of Biological Chemistry, 2015, 290, 7141-7150.	1.6	22
87	Ndfip1 represses cell proliferation by controlling Pten localization and signaling specificity. Journal of Molecular Cell Biology, 2015, 7, 119-131.	1.5	23
88	Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival. Cell, 2015, 162, 1365-1378.	13.5	121
89	TRAF2 regulates TNF and NF-κB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1. ELife, 2015, 4, .	2.8	75
90	The Role of Receptor Interacting Protein Kinase in Myelopoiesis in Health and Disease. Blood, 2015, 126, SCI-29-SCI-29.	0.6	0

#	Article	IF	CITATIONS
91	TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. ELife, 2014, 3, .	2.8	232
92	cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood, 2014, 123, 2562-2572.	0.6	145
93	Response to the Letter to the Editor. Immunology and Cell Biology, 2014, 92, 301-302.	1.0	0
94	Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL. Biochemical Journal, 2014, 457, 369-377.	1.7	92
95	IAPs and Necroptotic Cell Death. , 2014, , 57-77.		3
96	Is SIRT2 required for necroptosis?. Nature, 2014, 506, E4-E6.	13.7	23
97	RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell, 2014, 157, 1175-1188.	13.5	492
98	Ars Moriendi; the art of dying well – new insights into the molecular pathways of necroptotic cell death. EMBO Reports, 2014, 15, 155-164.	2.0	62
99	Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15072-15077.	3.3	484
100	Birinapant, a Smac-Mimetic with Improved Tolerability for the Treatment of Solid Tumors and Hematological Malignancies. Journal of Medicinal Chemistry, 2014, 57, 3666-3677.	2.9	146
101	IAP Family of Cell Death and Signaling Regulators. Methods in Enzymology, 2014, 545, 35-65.	0.4	103
102	Hepatitis C virus-induced hepatocyte cell death and protection by inhibition of apoptosis. Journal of General Virology, 2014, 95, 2204-2215.	1.3	24
103	193. Cytokine, 2014, 70, 74.	1.4	0
104	The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood, 2014, 124, 737-749.	0.6	111
105	HOIP Deficiency Causes Embryonic Lethality by Aberrant TNFR1-Mediated Endothelial Cell Death. Cell Reports, 2014, 9, 153-165.	2.9	217
106	Abstract 2278: The SMAC-mimetic birinapant regulates autocrine TNF production by caspase-8:RIPK1 complex via p38MAPK pathway. Cancer Research, 2014, 74, 2278-2278.	0.4	1
107	Masters, marionettes and modulators: intersection of pathogen virulence factors and mammalian death receptor signaling. Current Opinion in Immunology, 2013, 25, 436-440.	2.4	25
108	LymphotoxinÂα induces apoptosis, necroptosis and inflammatory signals with the same potency as tumour necrosis factor. FEBS Journal, 2013, 280, 5283-5297.	2.2	57

#	Article	IF	CITATIONS
109	The Pseudokinase MLKL Mediates Necroptosis via a Molecular Switch Mechanism. Immunity, 2013, 39, 443-453.	6.6	958
110	A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature, 2013, 501, 247-251.	13.7	238
111	Inhibitor of Apoptosis (IAP) Proteins-Modulators of Cell Death and Inflammation. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008730-a008730.	2.3	246
112	The FLIP Side of Life. Science Signaling, 2013, 6, pe2.	1.6	28
113	AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death and Differentiation, 2013, 20, 1149-1160.	5.0	402
114	Progranulin does not inhibit TNF and lymphotoxinâ€Î± signalling through TNF receptor 1. Immunology and Cell Biology, 2013, 91, 661-664.	1.0	35
115	CLL cells are resistant to smac mimetics because of an inability to form a ripoptosome complex. Cell Death and Disease, 2013, 4, e782-e782.	2.7	26
116	Necroptotic Death Of RIPK1-Deficient HSC Compromises Hematopoiesis. Blood, 2013, 122, 218-218.	0.6	0
117	Cytokine receptor signaling activates an IKK-dependent phosphorylation of PUMA to prevent cell death. Cell Death and Differentiation, 2012, 19, 633-641.	5.0	27
118	IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO Journal, 2012, 31, 1679-1691.	3.5	180
119	IAPs, TNF, inflammation and Jürg TSCHOPP; a personal perspective. Cell Death and Differentiation, 2012, 19, 1-4.	5.0	7
120	Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia. Journal of Cell Biology, 2012, 196, 29-36.	2.3	99
121	Is BID required for NOD signalling?. Nature, 2012, 488, E4-E6.	13.7	17
122	The Tumor Suppressor PTEN Is Exported in Exosomes and Has Phosphatase Activity in Recipient Cells. Science Signaling, 2012, 5, ra70.	1.6	258
123	The Ubiquitin Ligase XIAP Recruits LUBAC for NOD2 Signaling in Inflammation and Innate Immunity. Molecular Cell, 2012, 46, 746-758.	4.5	336
124	Inhibitor of Apoptosis Proteins Limit RIP3 Kinase-Dependent Interleukin-1 Activation. Immunity, 2012, 36, 215-227.	6.6	430
125	IAPS and ubiquitylation. IUBMB Life, 2012, 64, 411-418.	1.5	17
126	Differential regulation of Nedd4 ubiquitin ligases and their adaptor protein Ndfip1 in a rat model of ischemic stroke. Experimental Neurology, 2012, 235, 326-335.	2.0	31

#	Article	IF	CITATIONS
127	Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood, 2011, 117, 4041-4051.	0.6	92
128	1127 HEPATITIS B VIRUS INDUCES LOSS OF CIAPI AND SENSITIVITY TO TNF-ALPHA IN PRIMARY HEPATOCYTES. Journal of Hepatology, 2011, 54, S446.	1.8	0
129	The regulation of TNF signalling: what a tangled web we weave. Current Opinion in Immunology, 2011, 23, 620-626.	2.4	111
130	816 DYSREGULATION OF HEPATOCYTE SIGNAL TRANSDUCTION, CIAP1 AND APOPTOSIS BY HEPATITIS C VIRUS. Journal of Hepatology, 2011, 54, S327.	1.8	0
131	Linear ubiquitination prevents inflammation and regulates immune signalling. Nature, 2011, 471, 591-596.	13.7	805
132	Molecular determinants of Smac mimetic induced degradation of cIAP1 and cIAP2. Cell Death and Differentiation, 2011, 18, 1376-1386.	5.0	93
133	In TNF-stimulated Cells, RIPK1 Promotes Cell Survival by Stabilizing TRAF2 and cIAP1, which Limits Induction of Non-canonical NF-κB and Activation of Caspase-8. Journal of Biological Chemistry, 2011, 286, 13282-13291.	1.6	81
134	Smac Mimetics Activate the E3 Ligase Activity of cIAP1 Protein by Promoting RING Domain Dimerization. Journal of Biological Chemistry, 2011, 286, 17015-17028.	1.6	142
135	New Perspectives in TNF-R1-Induced NF-κB Signaling. Advances in Experimental Medicine and Biology, 2011, 691, 79-88.	0.8	9
136	c-Jun N-terminal kinase/c-Jun inhibits fibroblast proliferation by negatively regulating the levels of stathmin/oncoprotein 18. Biochemical Journal, 2010, 430, 345-354.	1.7	21
137	<i>In vivo</i> control of Bâ€cell survival and antigenâ€specific Bâ€cell responses. Immunological Reviews, 2010, 237, 90-103.	2.8	33
138	Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. Cell Death and Differentiation, 2010, 17, 35-45.	5.0	103
139	RIPK1 is not essential for TNFR1-induced activation of NF-κB. Cell Death and Differentiation, 2010, 17, 482-487.	5.0	162
140	TAK1 Is Required for Survival of Mouse Fibroblasts Treated with TRAIL, and Does So by NF-κB Dependent Induction of cFLIPL. PLoS ONE, 2010, 5, e8620.	1.1	19
141	Tumor Necrosis Factor (TNF) Signaling, but Not TWEAK (TNF-like Weak Inducer of Apoptosis)-triggered cIAP1 (Cellular Inhibitor of Apoptosis Protein 1) Degradation, Requires cIAP1 RING Dimerization and E2 Binding. Journal of Biological Chemistry, 2010, 285, 17525-17536.	1.6	37
142	Systematic InÂVivo RNAi Analysis Identifies IAPs as NEDD8-E3 Ligases. Molecular Cell, 2010, 40, 810-822.	4.5	82
143	Asymmetric Recruitment of cIAPs by TRAF2. Journal of Molecular Biology, 2010, 400, 8-15.	2.0	72
144	Dysregulation of hepatocyte cell cycle and cell viability by hepatitis B virus. Virus Research, 2010, 147, 7-16.	1.1	8

ARTICLE IF CITATIONS TRAF2 Must_Bind to Cellular Inhibitors of Apoptosis for Tumor Necrosis Factor (TNF) to Efficiently Activate NF-κB and to Prevent TNF-induced Apoptosis. Journal of Biological Chemistry, 2009, 284, 145 35906-35915. Another Facet of Ubiquitylation: Death. Journal of Molecular Cell Biology, 2009, 1, 80-81. 146 3 1.5Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3.3 102 15489-15494. CARP2 deficiency does not alter induction of NF-κB by TNFα. Current Biology, 2009, 19, R15-R17. 148 1.8 12 Fatal Hepatitis Mediated by Tumor Necrosis Factor TNFα Requires Caspase-8 and Involves the BH3-Only 149 6.6 128 Proteins Bid and Bim. Immunity, 2009, 30, 56-66. 150 XIAP discriminates between type I and type II FAS-induced apoptosis. Nature, 2009, 460, 1035-1039. 13.7 421 Recruitment of the Linear Ubiquitin Chain Assembly Complex Stabilizes the TNF-R1 Signaling Complex andÂls Required for TNF-Mediated Gene Induction. Molecular Cell, 2009, 36, 831-844. 4.5 674 582 MODULATION OF AKT, NFKB ACTIVITY, APOPTOSIS AND CELL CYCLE IN HEPATOCYTES BY THE LAMIVUDINE 1.8 152 0 RESISTANT RTM204I HBV MUTANT. Journal of Hepatology, 2009, 50, S214. Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. Journal of 2.3 Cell Biology, 2009, 187, 1037-1054. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-Î[®]B as well as cell 154 4.6 228 survival and oncogenesis. Nature Cell Biology, 2008, 10, 1309-1317. Cytoplasmic p53 is not required for PUMA-induced apoptosis. Cell Death and Differentiation, 2008, 15, 5.0213-215. Blocking granule-mediated death by primary human NK cells requires both protection of mitochondria 156 5.0 34 and inhibition of caspase activity. Cell Death and Differentiation, 2008, 15, 708-717. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their 5.0 256 ubiquitylation in trans. Cell Death and Differentiation, 2008, 15, 841-848. NF-κB Inhibition Reveals Differential Mechanisms of TNF Versus TRAIL-Induced Apoptosis Upstream or at the Level of Caspase-8 Activation Independent of cIAP2. Journal of Investigative Dermatology, 2008, 128, 158 0.3 61 1134-1147. Triggering of Apoptosis by Puma Is Determined by the Threshold Set by Prosurvival Bcl-2 Family 159 2.0 Proteins. Journal of Molecular Biology, 2008, 384, 313-323. Lack of reproducible growth inhibition by Schlafen1 and Schlafen2 in vitro. Blood Cells, Molecules, 160 0.6 19 and Diseases, 2008, 41, 188-193. Nedd4 Family-interacting Protein 1 (Ndfip1) Is Required for the Exosomal Secretion of Nedd4 Family 161 1.6 126 Proteins. Journal of Biological Chemistry, 2008, 283, 32621-32627.

JOHN J SILKE

TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1–TRAF2 complex to sensitize tumor 162 2.3 226 cells to TNFα. Journal of Cell Biology, 2008, 182, 171-184.

#

#	Article	IF	CITATIONS
163	Ubiquitylation and Cancer Development. Current Cancer Drug Targets, 2008, 8, 118-123.	0.8	11
164	Structures of the cIAP2 RING Domain Reveal Conformational Changes Associated with Ubiquitin-conjugating Enzyme (E2) Recruitment. Journal of Biological Chemistry, 2008, 283, 31633-31640.	1.6	153
165	TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1–TRAF2 complex to sensitize tumor cells to TNFα. Journal of Experimental Medicine, 2008, 205, i18-i18.	4.2	0
166	Ankyrin Repeat and Suppressors of Cytokine Signaling Box Protein Asb-9 Targets Creatine Kinase B for Degradation. Journal of Biological Chemistry, 2007, 282, 4728-4737.	1.6	42
167	IAP Antagonists Target cIAP1 to Induce TNFα-Dependent Apoptosis. Cell, 2007, 131, 682-693.	13.5	993
168	Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs. Cell Death and Differentiation, 2007, 14, 348-357.	5.0	83
169	Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO Journal, 2007, 26, 3227-3237.	3.5	184
170	Cell death provoked by loss of interleukin-3 signaling is independent of Bad, Bim, and PI3 kinase, but depends in part on Puma. Blood, 2006, 108, 1461-1468.	0.6	64
171	Identification and Validation of Oncogenes in Liver Cancer Using an Integrative Oncogenomic Approach. Cell, 2006, 125, 1253-1267.	13.5	989
172	TWEAK shall inherit the earth. Cell Death and Differentiation, 2006, 13, 1842-1844.	5.0	23
173	Nedd4-WW Domain-Binding Protein 5 (Ndfip1) Is Associated with Neuronal Survival after Acute Cortical Brain Injury. Journal of Neuroscience, 2006, 26, 7234-7244.	1.7	49
174	Inhibitor of Apoptosis Proteins and Caspases. , 2006, , 313-334.		0
175	IAPs, RINGs and ubiquitylation. Nature Reviews Molecular Cell Biology, 2005, 6, 287-297.	16.1	558
176	IAPs $\hat{a} \in $ the ubiquitin connection. Cell Death and Differentiation, 2005, 12, 1205-1207.	5.0	36
177	Determination of cell survival by RING-mediated regulation of inhibitor of apoptosis (IAP) protein abundance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16182-16187.	3.3	133
178	Unlike Diablo/smac, Grim Promotes Global Ubiquitination and Specific Degradation of X Chromosome-linked Inhibitor of Apoptosis (XIAP) and Neither Cause Apoptosis. Journal of Biological Chemistry, 2004, 279, 4313-4321.	1.6	32
179	Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. Journal of Cell Biology, 2004, 165, 835-842.	2.3	169

180 More Than Cell Death. Developmental Cell, 2004, 7, 2-3.

3.1 10

#	Article	IF	CITATIONS
181	HtrA2/Omi, a Sheep in Wolf's Clothing. Cell, 2003, 115, 251-253.	13.5	43
182	Mammalian mitochondrial IAP binding proteins. Biochemical and Biophysical Research Communications, 2003, 304, 499-504.	1.0	213
183	HtrA2 Promotes Cell Death through Its Serine Protease Activity and Its Ability to Antagonize Inhibitor of Apoptosis Proteins. Journal of Biological Chemistry, 2002, 277, 445-454.	1.6	484
184	The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3– and caspase 9–interacting sites. Journal of Cell Biology, 2002, 157, 115-124.	2.3	124
185	Jekyll and Hyde; changing places, changing faces. Cell Death and Differentiation, 2002, 9, 362-363.	5.0	1
186	Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature, 2002, 419, 634-637.	13.7	517
187	TNF AND CD95 PROMOTE IL-8 GENE TRANSACTIVATION VIA INDEPENDENT ELEMENTS IN COLON CARCINOMA CELLS. Cytokine, 2001, 15, 108-112.	1.4	2
188	Analysis of candidate antagonists of IAP-mediated caspase inhibition using yeast reconstituted with the mammalian Apaf-1-activated apoptosis mechanism. Apoptosis: an International Journal on Programmed Cell Death, 2001, 6, 331-338.	2.2	34
189	Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. EMBO Journal, 2001, 20, 3114-3123.	3.5	101
190	Till Death Do Us Part. Cell Death and Differentiation, 2001, 8, 662-664.	5.0	1
191	Diablo Promotes Apoptosis by Removing Miha/Xiap from Processed Caspase 9. Journal of Cell Biology, 2001, 152, 483-490.	2.3	188
192	Two kinds of BIR-containing protein - inhibitors of apoptosis, or required for mitosis. Journal of Cell Science, 2001, 114, 1821-1827.	1.2	107
193	Two kinds of BIR-containing protein - inhibitors of apoptosis, or required for mitosis. Journal of Cell Science, 2001, 114, 1821-7.	1.2	85
194	Sequence as well as functional similarity for DIABLO/Smac and Grim, Reaper and Hid?. Cell Death and Differentiation, 2000, 7, 1275-1275.	5.0	44
195	The Drosophila caspase DRONC is regulated by DIAP1. EMBO Journal, 2000, 19, 598-611.	3.5	304
196	Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins. Cell, 2000, 102, 43-53.	13.5	2,191
197	Characterization of the ectromelia virus serpin, SPI-2. Journal of General Virology, 2000, 81, 2425-2430.	1.3	46
198	Caspase inhibitors. Cell Death and Differentiation, 1999, 6, 1081-1086.	5.0	415

#	Article	IF	CITATIONS
199	Inhibition of apoptosis and clonogenic survival of cells expressing crmA variants: optimal caspase substrates are not necessarily optimal inhibitors. EMBO Journal, 1999, 18, 330-338.	3.5	75
200	Genes Inhibiting Caspases Rescue Neuronal Cells from Apoptosis and Allow Functional Survival of Cells Exposed to a Death Stimulus. Pediatric Research, 1999, 45, 195A-195A.	1.1	0
201	An embryonic demethylation mechanism involving binding of transcription factors to replicating DNA. EMBO Journal, 1998, 17, 1446-1453.	3.5	91
202	Cell death: Shadow Baxing. Current Biology, 1998, 8, R528-R531.	1.8	12
203	Long Non-Stop Reading Frames on the Antisense Strand of Heat Shock Protein 70 Genes and Prion Protein (PrP) Genes Are Conserved between Species. Biological Chemistry, 1997, 378, 1521-30.	1.2	16
204	A serine/arginine-rich nuclear matrix cyclophilin interacts with the C- terminal domain of RNA polymerase II. Nucleic Acids Research, 1997, 25, 2055-2061.	6.5	85
205	The majority of long non-stop reading frames on the antisense strand can be explained by biased codon usage. Gene, 1997, 194, 143-155.	1.0	29
206	Transcriptional repression by methylation: cooperativity between a CpG cluster in the promoter and remote CpG-rich regions. FEBS Letters, 1996, 379, 251-254.	1.3	26
207	Influence of DNA Sequence and Methylation Status on Bisulfite Conversion of Cytosine Residues. Analytical Biochemistry, 1995, 231, 263-265.	1.1	17
208	Complex demethylation patterns at Sp1 binding sites in F9 embryonal carcinoma cells. FEBS Letters, 1995, 370, 170-174.	1.3	27
209	The CpC-specific methylase Sssl has topoisomerase activity in the presence of Mg2+. Nucleic Acids Research, 1994, 22, 5354-5349.	6.5	45
210	Evidence for erosion of mouse CpG islands during mammalian evolution. Somatic Cell and Molecular Genetics, 1993, 19, 543-555.	0.7	75
211	Digesting the Role of JAK-STAT and Cytokine Signaling in Oral and Gastric Cancers. Frontiers in Immunology, 0, 13, .	2.2	10