
Sandra Galic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6037895/publications.pdf Version: 2024-02-01

SANDRA CALIC

#	Article	IF	CITATIONS
1	Neuropeptide Y1 receptor antagonism protects β-cells and improves glycemic control in type 2 diabetes. Molecular Metabolism, 2022, 55, 101413.	6.5	10
2	An AMPKα2-specific phospho-switch controls lysosomal targeting for activation. Cell Reports, 2022, 38, 110365.	6.4	8
3	Defective AMPK regulation of cholesterol metabolism accelerates atherosclerosis by promoting HSPC mobilization and myelopoiesis. Molecular Metabolism, 2022, 61, 101514.	6.5	10
4	Structure-function analysis of the AMPK activator SC4 and identification of a potent pan AMPK activator. Biochemical Journal, 2022, 479, 1181-1204.	3.7	6
5	Molecular Mechanisms Underlying the Beneficial Effects of Exercise on Brain Function and Neurological Disorders. International Journal of Molecular Sciences, 2021, 22, 4052.	4.1	35
6	Regulation of Pancreatic \hat{l}^2 -Cell Function by the NPY System. Endocrinology, 2021, 162, .	2.8	10
7	Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms. Nature Metabolism, 2020, 2, 873-881.	11.9	76
8	CaMKK2 is inactivated by cAMP-PKA signaling and 14-3-3 adaptor proteins. Journal of Biological Chemistry, 2020, 295, 16239-16250.	3.4	24
9	Functional analysis of an R311C variant of Ca ²⁺ â€calmodulinâ€dependent protein kinase kinaseâ€2 (CaMKK2) found as a de novo mutation in a patient with bipolar disorder. Bipolar Disorders, 2020, 22, 841-848.	1.9	9
10	The myokine meteorinâ€like (metrnl) improves glucose tolerance in both skeletal muscle cells and mice by targeting AMPKα2. FEBS Journal, 2020, 287, 2087-2104.	4.7	40
11	Genetic loss of AMPK-glycogen binding destabilises AMPK and disrupts metabolism. Molecular Metabolism, 2020, 41, 101048.	6.5	22
12	ATP synthase inhibitory factor 1 (IF1), a novel myokine, regulates glucose metabolism by AMPK and Akt dual pathways. FASEB Journal, 2019, 33, 14825-14840.	0.5	20
13	Allosteric regulation of AMP-activated protein kinase by adenylate nucleotides and small-molecule drugs. Biochemical Society Transactions, 2019, 47, 733-741.	3.4	19
14	Absence of the β1 subunit of <scp>AMP</scp> â€activated protein kinase reduces myofibroblast infiltration of the kidneys in early diabetes. International Journal of Experimental Pathology, 2019, 100, 114-122.	1.3	2
15	Inhibition of Adenosine Monophosphate–Activated Protein Kinase–3â€Hydroxyâ€3â€Methylglutaryl Coenzyme A Reductase Signaling Leads to Hypercholesterolemia and Promotes Hepatic Steatosis and Insulin Resistance. Hepatology Communications, 2019, 3, 84-98.	4.3	56
16	AMP-activated protein kinase selectively inhibited by the type II inhibitor SBI-0206965. Journal of Biological Chemistry, 2018, 293, 8874-8885.	3.4	98
17	Loss of BIM increases mitochondrial oxygen consumption and lipid oxidation, reduces adiposity and improves insulin sensitivity in mice. Cell Death and Differentiation, 2018, 25, 217-225.	11.2	18
18	Phosphorylation of Acetyl-CoA Carboxylase by AMPK Reduces Renal Fibrosis and Is Essential for the Anti-Fibrotic Effect of Metformin. Journal of the American Society of Nephrology: JASN, 2018, 29, 2326-2336.	6.1	93

SANDRA GALIC

#	Article	IF	CITATIONS
19	AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. ELife, 2018, 7, .	6.0	58
20	<scp>AMPK</scp> β1 reduces tumor progression and improves survival in p53 null mice. Molecular Oncology, 2017, 11, 1143-1155.	4.6	28
21	The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs. Nature Communications, 2017, 8, 571.	12.8	65
22	JNK Activation of BIM Promotes Hepatic Oxidative Stress, Steatosis, and Insulin Resistance in Obesity. Diabetes, 2017, 66, 2973-2986.	0.6	21
23	Exercise reverses ageâ€related vulnerability of the retina to injury by preventing complementâ€mediated synapse elimination via a <scp>BDNF</scp> â€dependent pathway. Aging Cell, 2016, 15, 1082-1091.	6.7	64
24	Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease. Journal of Neuroscience, 2016, 36, 3049-3063.	3.6	128
25	Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise. Physiological Reports, 2015, 3, e12444.	1.7	16
26	Inhibition of AMP-Activated Protein Kinase at the Allosteric Drug-Binding Site Promotes Islet Insulin Release. Chemistry and Biology, 2015, 22, 705-711.	6.0	50
27	Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells <i>ex vivo</i> through inhibition of <i>de novo</i> lipogenesis. Biochemical Journal, 2015, 469, 177-187.	3.7	79
28	Activation of AMPK reduces the co-transporter activity of NKCC1. Molecular Membrane Biology, 2014, 31, 95-102.	2.0	10
29	Small Molecule Drug A-769662 and AMP Synergistically Activate Naive AMPK Independent of Upstream Kinase Signaling. Chemistry and Biology, 2014, 21, 619-627.	6.0	137
30	Suppressor of cytokine signalling (SOCS) proteins as guardians of inflammatory responses critical for regulating insulin sensitivity. Biochemical Journal, 2014, 461, 177-188.	3.7	76
31	AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia, 2014, 57, 1693-1702.	6.3	105
32	Novel mechanisms of Na ⁺ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK. American Journal of Physiology - Renal Physiology, 2014, 307, F96-F106.	2.7	28
33	Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nature Medicine, 2013, 19, 1649-1654.	30.7	674
34	Deletion of Skeletal Muscle SOCS3 Prevents Insulin Resistance in Obesity. Diabetes, 2013, 62, 56-64.	0.6	117
35	Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance. Diabetologia, 2012, 55, 3083-3093.	6.3	46
36	Significance of Short Chain Fatty Acid Transport by Members of the Monocarboxylate Transporter Family (MCT). Neurochemical Research, 2012, 37, 2562-2568.	3.3	63

SANDRA GALIC

#	Article	IF	CITATIONS
37	T cell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice. Diabetologia, 2012, 55, 468-478.	6.3	28
38	Elevated Hypothalamic TCPTP in Obesity Contributes to Cellular Leptin Resistance. Cell Metabolism, 2011, 14, 684-699.	16.2	162
39	Macrophage Deletion of SOCS1 Increases Sensitivity to LPS and Palmitic Acid and Results in Systemic Inflammation and Hepatic Insulin Resistance. Diabetes, 2011, 60, 2023-2031.	0.6	72
40	Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. Journal of Clinical Investigation, 2011, 121, 4903-4915.	8.2	291
41	T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. Journal of Clinical Investigation, 2011, 121, 4758-4774.	8.2	198
42	Liver-specific suppressor of cytokine signaling-3 deletion in mice enhances hepatic insulin sensitivity and lipogenesis resulting in fatty liver and obesity1. Hepatology, 2010, 52, 1632-1642.	7.3	89
43	AMPK β1 Deletion Reduces Appetite, Preventing Obesity and Hepatic Insulin Resistance. Journal of Biological Chemistry, 2010, 285, 115-122.	3.4	154
44	T-Cell Protein Tyrosine Phosphatase Attenuates STAT3 and Insulin Signaling in the Liver to Regulate Gluconeogenesis. Diabetes, 2010, 59, 1906-1914.	0.6	78
45	Whole Body Deletion of AMP-activated Protein Kinase β2 Reduces Muscle AMPK Activity and Exercise Capacity. Journal of Biological Chemistry, 2010, 285, 37198-37209.	3.4	145
46	Adipose tissue as an endocrine organ. Molecular and Cellular Endocrinology, 2010, 316, 129-139.	3.2	1,345
47	Reactive Oxygen Species Enhance Insulin Sensitivity. Cell Metabolism, 2009, 10, 260-272.	16.2	509
48	Coordinated Regulation of Insulin Signaling by the Protein Tyrosine Phosphatases PTP1B and TCPTP. Molecular and Cellular Biology, 2005, 25, 819-829.	2.3	182
49	Regulation of Insulin Signaling through Reversible Oxidation of the Protein-tyrosine Phosphatases TC45 and PTP1B. Journal of Biological Chemistry, 2004, 279, 37716-37725.	3.4	242
50	Regulation of Insulin Receptor Signaling by the Protein Tyrosine Phosphatase TCPTP. Molecular and Cellular Biology, 2003, 23, 2096-2108.	2.3	166
51	The loop between helix 4 and helix 5 in the monocarboxylate transporter MCT1 is important for substrate selection and protein stability. Biochemical Journal, 2003, 376, 413-422.	3.7	46