List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6036744/publications.pdf Version: 2024-02-01

Κλζιιμιρο Υλνιλοι

#	Article	IF	CITATIONS
1	Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film. Applied Physics Express, 2014, 7, 025103.	2.4	205
2	Highly Stabilized β-Carotene in Carbon Nanotubes. Advanced Materials, 2006, 18, 437-441.	21.0	202
3	Tunable Carbon Nanotube Thinâ€Film Transistors Produced Exclusively via Inkjet Printing. Advanced Materials, 2010, 22, 3981-3986.	21.0	201
4	Transport Mechanisms in Metallic and Semiconducting Single-Wall Carbon Nanotube Networks. ACS Nano, 2010, 4, 4027-4032.	14.6	172
5	Optical and Conductive Characteristics of Metallic Single-Wall Carbon Nanotubes with Three Basic Colors; Cyan, Magenta, and Yellow. Applied Physics Express, 0, 1, 034003.	2.4	138
6	Tuning of the Thermoelectric Properties of One-Dimensional Material Networks by Electric Double Layer Techniques Using Ionic Liquids. Nano Letters, 2014, 14, 6437-6442.	9.1	137
7	Confined water inside single-walled carbon nanotubes: Global phase diagram and effect of finite length. Journal of Chemical Physics, 2011, 134, 244501.	3.0	133
8	Photosensitive Function of Encapsulated Dye in Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 4992-4997.	13.7	123
9	Optical Evaluation of the Metal-to-Semiconductor Ratio of Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 13187-13191.	3.1	91
10	Highly Stabilized Conductivity of Metallic Single Wall Carbon Nanotube Thin Films. Journal of Physical Chemistry C, 2008, 112, 3591-3596.	3.1	86
11	Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nature Nanotechnology, 2007, 2, 422-425.	31.5	84
12	Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor. Nature Communications, 2021, 12, 4931.	12.8	84
13	Conjugation Length Dependence of Internal Conversion in Carotenoids: Role of the Intermediate State. Physical Review Letters, 2004, 93, 163002.	7.8	75
14	Disentanglement of the electronic properties of metallicity-selected single-walled carbon nanotubes. Physical Review B, 2009, 80, .	3.2	73
15	Light-harvesting function of \hat{l}^2 -carotene inside carbon nanotubes. Physical Review B, 2006, 74, .	3.2	72
16	Chiral-Angle Distribution for Separated Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 3151-3154.	9.1	69
17	Separations of Metallic and Semiconducting Carbon Nanotubes by Using Sucrose as a Gradient Medium. Journal of Physical Chemistry C, 2008, 112, 18889-18894.	3.1	62
18	Electrochromic Carbon Electrodes: Controllable Visible Color Changes in Metallic Singleâ€Wall Carbon Nanotubes. Advanced Materials, 2011, 23, 2811-2814.	21.0	58

#	Article	IF	CITATIONS
19	Unified explanation for linear and nonlinear optical responses inβ-carotene: A sub-20â^'fsdegenerate four-wave mixing spectroscopic study. Physical Review B, 2007, 75, .	3.2	57
20	Chirality-Dependent Combustion of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 9671-9677.	3.1	56
21	Single Chirality Extraction of Single-Wall Carbon Nanotubes for the Encapsulation of Organic Molecules. Journal of the American Chemical Society, 2012, 134, 9545-9548.	13.7	52
22	Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes. Nature Communications, 2018, 9, 1121.	12.8	52
23	The very early events following photoexcitation of carotenoids. Archives of Biochemistry and Biophysics, 2004, 430, 61-69.	3.0	50
24	Solving the Thermoelectric Trade-Off Problem with Metallic Carbon Nanotubes. Nano Letters, 2019, 19, 7370-7376.	9.1	50
25	Conjugation length dependence of relaxation kinetics in β-carotene homologs probed by femtosecond Kerr-gate fluorescence spectroscopy. Chemical Physics Letters, 2006, 425, 66-70.	2.6	49
26	Excitation energy dependence of excited states dynamics in all-trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy. Chemical Physics Letters, 2005, 408, 89-95.	2.6	48
27	Thermoelectric Detection of Multi‣ubband Density of States in Semiconducting and Metallic Singleâ€Walled Carbon Nanotubes. Small, 2016, 12, 3388-3392.	10.0	45
28	Inkjet printing of single-walled carbon nanotube thin-film transistors patterned by surface modification. Applied Physics Letters, 2011, 99, .	3.3	43
29	Second Order Nonlinear Optical Properties of the Single Crystal ofN-Benzyl 2-methyl-4-nitroaniline: Anomalous Enhancement of thed333Component and Its Possible Origin. Japanese Journal of Applied Physics, 2006, 45, 8676-8685.	1.5	41
30	Continuous Bandâ€Filling Control and Oneâ€Dimensional Transport in Metallic and Semiconducting Carbon Nanotube Tangled Films. Advanced Functional Materials, 2014, 24, 3305-3311.	14.9	41
31	IR-Extended Photoluminescence Mapping of Single-Wall and Double-Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 17420-17424.	2.6	39
32	Groove-Assisted Global Spontaneous Alignment of Carbon Nanotubes in Vacuum Filtration. Nano Letters, 2020, 20, 2332-2338.	9.1	38
33	Internal charge transfer in metallicity sorted ferrocene filled carbon nanotube hybrids. Carbon, 2013, 59, 237-245.	10.3	33
34	Diameter Analysis of Rebundled Single-Wall Carbon Nanotubes Using X-ray Diffraction: Verification of Chirality Assignment Based on Optical Spectra. Journal of Physical Chemistry C, 2008, 112, 15997-16001.	3.1	31
35	Revealing the Adsorption Mechanisms of Nitroxides on Ultrapure, Metallicity-Sorted Carbon Nanotubes. ACS Nano, 2014, 8, 1375-1383.	14.6	31
36	Breaking Kasha's rule. Nature Photonics, 2010, 4, 200-201.	31.4	30

KAZUHIRO YANAGI

#	Article	IF	CITATIONS
37	Tuning Localized Transverse Surface Plasmon Resonance in Electricity-Selected Single-Wall Carbon Nanotubes by Electrochemical Doping. Physical Review Letters, 2015, 114, 176807.	7.8	30
38	Inkjet printing of aligned single-walled carbon-nanotube thin films. Applied Physics Letters, 2013, 102, .	3.3	29
39	Inner tube growth properties and electronic structure of ferrocene-filled large diameter single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2575-2580.	1.5	29
40	Improvement of thermoelectric performance of single-wall carbon nanotubes by heavy doping: Effect of one-dimensional band multiplicity. Applied Physics Express, 2016, 9, 125103.	2.4	27
41	Extraction of High-Purity Single-Chirality Single-Walled Carbon Nanotubes through Precise pH Control Using Carbon Dioxide Bubbling. Journal of Physical Chemistry C, 2017, 121, 13391-13395.	3.1	27
42	Vibrational Analysis of Organic Molecules Encapsulated in Carbon Nanotubes by Tip-Enhanced Raman Spectroscopy. Japanese Journal of Applied Physics, 2006, 45, 9286-9289.	1.5	26
43	Isotropic Seebeck coefficient of aligned single-wall carbon nanotube films. Applied Physics Letters, 2018, 113, .	3.3	26
44	Extraction of Linear Carbon Chains Unravels the Role of the Carbon Nanotube Host. ACS Nano, 2018, 12, 8477-8484.	14.6	26
45	Electroabsorption spectroscopy ofβ-carotene homologs: Anomalous enhancement ofΔμ. Physical Review B, 2005, 71, .	3.2	25
46	Ink-Jet Printing of a Single-Walled Carbon Nanotube Thin Film Transistor. Japanese Journal of Applied Physics, 2009, 48, 06FF03.	1.5	25
47	Non-volatile Resistance Switching using Single-Wall Carbon Nanotube Encapsulating Fullerene Molecules. Applied Physics Express, 0, 2, 035008.	2.4	24
48	Orbital and spin magnetic moments of transforming one-dimensional iron inside metallic and semiconducting carbon nanotubes. Physical Review B, 2013, 87, .	3.2	23
49	Origin of transition dipole-moment polarizability and hyperpolarizability in hydrazones. Physical Review B, 2003, 67, .	3.2	22
50	Low-Voltage Operation of Ink-Jet-Printed Single-Walled Carbon Nanotube Thin Film Transistors. Japanese Journal of Applied Physics, 2010, 49, 02BD09.	1.5	21
51	Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride. Journal of Materials Science, 2018, 53, 13018-13029.	3.7	21
52	Four-wave mixing signals from β-carotene and its nÂ=Â15 homologue. Photosynthesis Research, 2008, 95, 299-308.	2.9	20
53	Extended-conjugation π-electron systems in carbon nanotubes. Scientific Reports, 2018, 8, 8098.	3.3	20
54	Control of High-Harmonic Generation by Tuning the Electronic Structure and Carrier Injection. Nano Letters, 2020, 20, 6215-6221.	9.1	20

#	Article	IF	CITATIONS
55	Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotube thin films in a wide energy region. Solid State Communications, 2011, 151, 1696-1699.	1.9	19
56	On the bonding environment of phosphorus in purified doped single-walled carbon nanotubes. Carbon, 2015, 81, 91-95.	10.3	19
57	Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics, optoelectronics, and thermoelectrics. Journal Physics D: Applied Physics, 2020, 53, 063001.	2.8	19
58	Local Electrostatic Field Induced by the Carotenoid Bound to the Reaction Center of the Purple Photosynthetic BacteriumRhodobacterSphaeroides. Journal of Physical Chemistry B, 2005, 109, 992-998.	2.6	18
59	<i>In situ</i> filling of metallic singleâ€walled carbon nanotubes with ferrocene molecules. Physica Status Solidi (B): Basic Research, 2012, 249, 2408-2411.	1.5	18
60	Charge Manipulation in Molecules Encapsulated Inside Single-Wall Carbon Nanotubes. Physical Review Letters, 2013, 110, 086801.	7.8	18
61	Thermoelectric properties of WS ₂ nanotube networks. Applied Physics Express, 2017, 10, 015001.	2.4	18
62	Wafer-Scale Growth of One-Dimensional Transition-Metal Telluride Nanowires. Nano Letters, 2021, 21, 243-249.	9.1	18
63	Inkjet Printing of Carbon Nanotube Complementary Inverters. Applied Physics Express, 2011, 4, 105101.	2.4	17
64	Sorting Transition-Metal Dichalcogenide Nanotubes by Centrifugation. ACS Omega, 2018, 3, 8932-8936.	3.5	17
65	Colors of carbon nanotubes. Diamond and Related Materials, 2009, 18, 935-939.	3.9	16
66	Ambipolar transistors based on random networks of WS ₂ nanotubes. Applied Physics Express, 2016, 9, 075001.	2.4	16
67	Local optical absorption spectra of MoS2monolayers obtained using scanning near-field optical microscopy measurements. Japanese Journal of Applied Physics, 2016, 55, 038003.	1.5	16
68	Templated direct growth of ultra-thin double-walled carbon nanotubes. Nanoscale, 2018, 10, 21254-21261.	5.6	16
69	Effective, fast, and low temperature encapsulation of fullerene derivatives in single wall carbon nanotubes. Surface Science, 2007, 601, 5116-5120.	1.9	15
70	Optical properties of metallic and semiconducting singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2233-2238.	1.5	15
71	Fabrication of thermoelectric devices using precisely Fermi level-tuned semiconducting single-wall carbon nanotubes. Applied Physics Letters, 2015, 107, .	3.3	15
72	Direct observation of cross-polarized excitons in aligned single-chirality single-wall carbon nanotubes. Physical Review B, 2019, 99, .	3.2	15

#	Article	IF	CITATIONS
73	Stark Spectroscopy on the LH2 Complex fromRhodobacter sphaeroidesStrain G1C; Frequency and Temperature Dependenceâ€. Journal of Physical Chemistry B, 2004, 108, 10334-10339.	2.6	14
74	Effective Separation of Carbon Nanotubes and Metal Particles from Pristine Raw Soot by Ultracentrifugation. Japanese Journal of Applied Physics, 2009, 48, 015004.	1.5	14
75	Characterization of the Electronic Properties of Singleâ€Walled Carbon Nanotubes Filled with an Electron Donor—Rubidium Iodide: Multifrequency Raman and Xâ€ray Photoelectron Spectroscopy Studies. Physica Status Solidi (B): Basic Research, 2019, 256, 1900209.	1.5	14
76	Endohedral metallofullerenes as strong singlet oxygen quenchers. Chemical Physics Letters, 2007, 435, 306-310.	2.6	13
77	Intrinsic Magnetoresistance of Single-Walled Carbon Nanotubes Probed by a Noncontact Method. Physical Review Letters, 2010, 104, 016803.	7.8	13
78	Haldane State Formed by Oxygen Molecules Encapsulated in Single-Walled Carbon Nanotubes. Journal of the Physical Society of Japan, 2014, 83, 113706.	1.6	13
79	Chirality fingerprinting and geometrical determination of single-walled carbon nanotubes: Analysis of fine structure of X-ray diffraction pattern. Carbon, 2014, 75, 299-306.	10.3	13
80	Inner tube growth and electronic properties of metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	13
81	Influence of Aromatic Environments on the Physical Properties of β-Carotene. Journal of Physical Chemistry C, 2010, 114, 2524-2530.	3.1	12
82	Air-stable and efficient electron doping of monolayer MoS ₂ by salt–crown ether treatment. Nanoscale, 2021, 13, 8784-8789.	5.6	12
83	PERIPUTOS: Purity evaluated by Raman intensity of pristine and ultracentrifuged topping of singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2009, 246, 2728-2731.	1.5	11
84	Global Phase Diagram of Water Confined on the Nanometer Scale. Journal of the Physical Society of Japan, 2010, 79, 083802.	1.6	11
85	Purification, separation and extraction of inner tubes from double-walled carbon nanotubes by tailoring density gradient ultracentrifugation using optical probes. Carbon, 2014, 74, 282-290.	10.3	11
86	Comparison of Doping Levels of Singleâ€Walled Carbon Nanotubes Synthesized by Arcâ€Discharge and Chemical Vapor Deposition Methods by Encapsulated Silver Chloride. Physica Status Solidi (B): Basic Research, 2018, 255, 1800178.	1.5	11
87	Control of Thermal Conductance across Vertically Stacked Two-Dimensional van der Waals Materials <i>via</i> Interfacial Engineering. ACS Nano, 2021, 15, 15902-15909.	14.6	11
88	Incident light polarization dependence of terahertz emission spectrum of crystalline 4â€N,N-dimethylamino-4′â€N′-methyl-stilbazolium tosylate. Journal of Applied Physics, 2006, 100, 043117.	2.5	10
89	Light-harvesting function of \hat{l}^2 -carotene inside carbon nanotubes explored by femtosecond absorption spectroscopy. Physical Review B, 2008, 77, .	3.2	10
90	Indirect exchange interaction in fully metal-semiconductor separated single-walled carbon nanotubes revealed by electron spin resonance. Physical Review B, 2012, 86, .	3.2	10

#	Article	IF	CITATIONS
91	Electrically induced ambipolar spin vanishments in carbon nanotubes. Scientific Reports, 2015, 5, 11859.	3.3	10
92	Comprehensive spectroscopic characterization of high purity metallicity-sorted single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2015, 252, 2512-2518.	1.5	10
93	Synthesis and ambipolar transistor properties of tungsten diselenide nanotubes. Applied Physics Letters, 2020, 116, .	3.3	10
94	Bond urvature effect on burning of singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4035-4039.	1.5	9
95	Electron spin resonance from semiconductor–metal separated SWCNTs. Physica Status Solidi (B): Basic Research, 2010, 247, 2851-2854.	1.5	9
96	Structures and functions of carotenoids bound to reaction centers from purple photosynthetic bacteria. Pure and Applied Chemistry, 2006, 78, 1505-1518.	1.9	8
97	The influence of incorporated βâ€carotene on the vibrational properties of single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2734-2737.	1.5	8
98	Continuous Electron Doping of Single-Walled Carbon Nanotube Films Using Inkjet Technique. Japanese Journal of Applied Physics, 2012, 51, 06FD18.	1.5	8
99	Resonance enhancement of first- and second-order coherent phonons in metallic single-walled carbon nanotubes. Physical Review B, 2014, 90, .	3.2	8
100	Disentangling Vacancy Oxidation on Metallicity-Sorted Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 18316-18322.	3.1	8
101	Separation of Nickelocene-Filled Single-Walled Carbon Nanotubes by Conductivity Type and Diameter. Physica Status Solidi (B): Basic Research, 2017, 254, 1700178.	1.5	8
102	Transistor properties of relatively small-diameter tungsten disulfide nanotubes obtained by sulfurization of solution-synthesized tungsten oxide nanowires. Applied Physics Express, 2019, 12, 085001.	2.4	8
103	Temperature dependence of the Seebeck coefficient for mixed semiconducting and metallic single-wall carbon nanotube bundles. Applied Physics Express, 2020, 13, 015001.	2.4	8
104	Large third-order optical nonlinearity realized in symmetric nonpolar carotenoids. Physical Review B, 2008, 78, .	3.2	7
105	On the purification of CVD grown boron doped singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 2504-2507.	1.5	7
106	Improved synthesis of WS ₂ nanotubes with relatively small diameters by tuning sulfurization timing and reaction temperature. Japanese Journal of Applied Physics, 2021, 60, 100902.	1.5	7
107	Effect of inhomogeneous band broadening on the nonlinear optical properties of hydrazones. Physical Review B, 2004, 69, .	3.2	6
108	Deactivation of singlet oxygen by single-wall carbon nanohorns. Chemical Physics Letters, 2006, 431, 145-148.	2.6	6

#	Article	IF	CITATIONS
109	Subpicosecond coherent nonlinear optical response of isolated single-walled carbon nanotubes. Physical Review B, 2009, 80, .	3.2	6
110	Optical Signature of Charge Transfer in n-Type Carbon Nanotube Transistors Doped with Printable Organic Molecules. Applied Physics Express, 2012, 5, 125102.	2.4	6
111	Environmental stability of ferrocene filled in purely metallic single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2599-2604.	1.5	6
112	Tailoring the electronic properties of single-walled carbon nanotubes via filling with nickel acetylacetonate. Physica Status Solidi (B): Basic Research, 2015, 252, 2546-2550.	1.5	6
113	Thermoelectric properties of single-wall carbon nanotube networks. Japanese Journal of Applied Physics, 2019, 58, 075003.	1.5	6
114	Broadband sum frequency generation spectroscopy of dark exciton states in hBN-encapsulated monolayer WSe ₂ . Optics Express, 2021, 29, 24629.	3.4	6
115	A comparison of the Liptay theory of electroabsorption spectroscopy with the sum-over-state model and its modification for the degenerate case. Journal of Chemical Physics, 2011, 134, 044138.	3.0	5
116	Fine Patterning of Inkjet-Printed Single-Walled Carbon-Nanotube Thin-Film Transistors. Japanese Journal of Applied Physics, 2012, 51, 06FD15.	1.5	5
117	Magnetic phase transition for defect induced electron spins from fully metal–semiconductor separated SWCNTs. Physica Status Solidi (B): Basic Research, 2012, 249, 2562-2567.	1.5	5
118	Ferromagnetic decoration in metal–semiconductor separated and ferrocene functionalized singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 2323-2327.	1.5	5
119	Optical microspectroscopy study on enriched (11,10) SWCNTs encapsulating C60 fullerene molecules. Carbon, 2016, 107, 593-599.	10.3	5
120	Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques. Scientific Reports, 2017, 7, 46004.	3.3	5
121	Origin of the background absorption in carbon nanotubes: Phonon-assisted excitonic continuum. Carbon, 2022, 186, 465-474.	10.3	5
122	String like Assembly of Aligned Single-Wall Carbon Nanotubes in a Single-Chiral State. Applied Physics Express, 2013, 6, 065103.	2.4	4
123	Self-formation of highly aligned metallic, semiconducting and single chiral single-walled carbon nanotubes assemblies via a crystal template method. Applied Physics Letters, 2014, 105, .	3.3	4
124	Differentiation of Carbon Nanotubes with Different Chirality. , 2014, , 19-38.		4
125	Bias-induced modulation of ultrafast carrier dynamics in metallic single-walled carbon nanotubes. Physical Review B, 2018, 97, .	3.2	4
126	Toward a Predominant Substitutional Bonding Environment in B-Doped Single-Walled Carbon Nanotubes. ACS Omega, 2019, 4, 1941-1946.	3.5	4

#	Article	IF	CITATIONS
127	Reversible changes in the electronic structure of carbon nanotube-hybrids upon NO ₂ exposure under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 9753-9759.	10.3	4
128	Role of dark exciton states in the relaxation dynamics of bright 1s excitons in monolayer WSe2. Applied Physics Letters, 2021, 119, .	3.3	4
129	Endohedral Functionalization of Metallicity-Sorted Single-Walled Carbon Nanotubes. Proceedings (mdpi), 2020, 56, .	0.2	4
130	Fine Patterning of Inkjet-Printed Single-Walled Carbon-Nanotube Thin-Film Transistors. Japanese Journal of Applied Physics, 2012, 51, 06FD15.	1.5	4
131	Formation of a Two-Dimensional Electronic System in Laterally Assembled WTe Nanowires. ACS Applied Nano Materials, 2022, 5, 6277-6284.	5.0	4
132	Multifrequency Raman spectroscopy on bulk (11,10) chirality enriched semiconducting singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2432-2436.	1.5	3
133	Local optical absorption spectra of h-BN–MoS2van der Waals heterostructure revealed by scanning near-field optical microscopy. Japanese Journal of Applied Physics, 2016, 55, 06GB01.	1.5	3
134	In situ time-domain thermoreflectance measurements using Au as the transducer during electrolyte gating. Applied Physics Letters, 2020, 117, 133104.	3.3	3
135	One-dimensionality of thermoelectric properties of semiconducting nanomaterials. Physical Review Materials, 2021, 5, .	2.4	3
136	Thermophysical properties of a single-wall carbon nanotube thin film on Au electrodes evaluated by a time-domain thermoreflectance method. Japanese Journal of Applied Physics, 2019, 58, 128006.	1.5	3
137	Continuous Electron Doping of Single-Walled Carbon Nanotube Films Using Inkjet Technique. Japanese Journal of Applied Physics, 2012, 51, 06FD18.	1.5	3
138	Photo-excited state of N-benzyl MNA studied by femtosecond time-resolved absorption spectroscopy. Chemical Physics Letters, 2003, 382, 693-698.	2.6	2
139	Thirdâ€order optical nonlinearity of βâ€carotene homologues. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S31.	0.8	2
140	Polarised Raman measurements of β arotene encapsulated in SWNTs. Physica Status Solidi (B): Basic Research, 2010, 247, 2871-2874.	1.5	2
141	Raman response from doubleâ€wall carbon nanotubes based on metallicity selected host SWCNTs. Physica Status Solidi (B): Basic Research, 2010, 247, 2880-2883.	1.5	2
142	Orbital and spin magnetic moments of ferrocene encapsulated in metallicity sorted singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 2424-2427.	1.5	2
143	Intra- and inter-tube exciton relaxation dynamics in high purity semiconducting and metallic single-walled carbon nanotubes. European Physical Journal B, 2013, 86, 1.	1.5	2
144	Phase analysis of coherent radial-breathing-mode phonons in carbon nanotubes: Implications for generation and detection processes. Physical Review B, 2018, 97, .	3.2	2

KAZUHIRO YANAGI

#	Article	IF	CITATIONS
145	Synthesis of relatively small-diameter tungsten ditelluride nanowires from solution-grown tungsten oxide nanowires. Japanese Journal of Applied Physics, 2021, 60, SCCD02.	1.5	2
146	Unravelling the Complete Raman Response of Graphene Nanoribbons Discerning the Signature of Edge Passivation. Small Methods, 2022, 6, .	8.6	2
147	13C-NMR Shift of Highly Concentrated Metallic and Semiconducting Single-Walled Carbon Nanotubes. Journal of the Physical Society of Japan, 2013, 82, 015001.	1.6	1
148	Site-dependence of relationships between photoluminescence and applied electric field in monolayer and bilayer molybdenum disulfide. Japanese Journal of Applied Physics, 2019, 58, 015001.	1.5	1
149	Hall effect in gated single-wall carbon nanotube films. Scientific Reports, 2022, 12, 101.	3.3	1
150	Heat and Charge Carrier Flow through Single-Walled Carbon Nanotube Films in Vertical Electrolyte-Gated Transistors: Implications for Thermoelectric Energy Conversion. ACS Applied Nano Materials, 2022, 5, 6100-6105.	5.0	1
151	Tip-enhanced near-field Raman spectroscopy applied to nano-composite materials. Proceedings of SPIE, 2007, , .	0.8	0
152	1TP2-08 Encapsulation of ion-pumping rhodopsins into multi-wall carbon nanotubes(The 47th Annual) Tj ETQq0	0 0 rgBT /	Overlock 10
153	High pressure Raman study of caroteneâ€encapsulating singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2009, 246, 496-499.	1.5	0
154	1P-228 Encapsulation of ion-pumping rhodopsins into multi-wall carbon nanotubes(Photobiology:Vision & Photoreception, The 47th Annual Meeting of the Biophysical Society) Tj ETQqQ) 0001rgBT	/Overlock 10
155	Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotube thin films in a broad frequency region. , 2010, , .		0
156	Transport Mechanisms in Metallic and Semiconducting Single-walled Carbon Nanotubes. , 2014, , 415-423.		0
157	Tuning Physical Properties and Structures of ï€-Electron System Formed by Single-Wall Carbon Nanotubes with Selected Chiralities. , 2015, , 155-175.		0
158	Intertube effects on one-dimensional correlated state of metallic single-wall carbon nanotubes probed by C13 NMR. Physical Review B, 2017, 95, .	3.2	0
159	Coherent Spectroscopy of Carotenoid and Bacteriochlorophyll. , 2008, , 265-268.		0
160	Ultrafast dynamics of light-harvesting function of β-carotene in carbon nanotube. Springer Series in Chemical Physics, 2009, , 610-612.	0.2	0
161	Resonant Enhancement of Coherent Higher-Order Phonons in Single-Walled Carbon Nanotubes. , 2013, , .		0
162	Electrochemical Control of Coherent Phonon Generations in Single-walled Metallic Carbon Nanotubes. , 2014, , .		0

IF # ARTICLE CITATIONS Electrochemical Control of Coherent Phonon Generations in Single-Walled Metallic Carbon Nanotubes. Springer Proceedings in Physics, 2015, , 356-359. Chirality Dependent Coherent Phonon Dynamics in Carbon Nanotube Solutions., 2017,,. 164 0 Structures and optical properties of thin tungsten oxide nanowires treated with poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Oxerlock (Digital Presentation) Chiroptical Effect in Aligned Carbon Nanotube Films. ECS Meeting Abstracts, 0 166 0.0 2022, MA2022-01, 750-750. (Invited, Digital Presentation) Atomically Precise Synthesis of One-Dimensional Transition Metal Chalcogenides Using Nano-Test-Tubes. ECS Meeting Abstracts, 2022, MA2022-01, 769-769. (Digital Presentation) Thermoelectric and Electronic Transport Studies of Ultrahigh-Conductivity Aligned Carbon Nanotube Assemblies. ECS Meeting Abstracts, 2022, MA2022-01, 759-759. 168 0.0 0 (Digital Presentation) Strategy to Enhance the Power Factor in Carbon Nanotubes. ECS Meeting Abstracts, 2022, MA2022-01, 644-644. (Invited, Digital Presentation) Ultra-Low Thermal Conductance across Hetero-Structured 170 0.0 0 Four-Layered Van Der Waals Materials. ECS Meeting Abstracts, 2022, MA2022-01, 787-787.

KAZUHIRO YANAGI