Steven D Gaines

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6034441/publications.pdf

Version: 2024-02-01

144 papers 14,877 citations

51
h-index

22832 112 g-index

149 all docs

149 docs citations

149 times ranked 14957 citing authors

#	Article	IF	CITATIONS
1	Evaluating Conditions for Moored Fish Aggregating Device Fisheries Development in the Caribbean and Bermuda. Frontiers in Marine Science, 2022, 9, .	2.5	3
2	Expanding ocean food production under climate change. Nature, 2022, 605, 490-496.	27.8	20
3	A Scientific Synthesis of Marine Protected Areas in the United States: Status and Recommendations. Frontiers in Marine Science, 2022, 9, .	2.5	10
4	Variation in herbivore grazing behavior across Caribbean reef sites. Marine Biology, 2021, 168, 1.	1.5	4
5	Protecting the global ocean for biodiversity, food and climate. Nature, 2021, 592, 397-402.	27.8	359
6	Range edges of North American marine species are tracking temperature over decades. Global Change Biology, 2021, 27, 3145-3156.	9.5	38
7	Reply to Hilborn: We agree that MPAs can improve fish catch in the South and Southeast Asia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2100660118.	7.1	0
8	Reply to Ovando et al.: How connected are global fisheries?. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2100364118.	7.1	1
9	Assessing the populationâ€level conservation effects of marine protected areas. Conservation Biology, 2021, 35, 1861-1870.	4.7	27
10	A case for seaweed aquaculture inclusion in U.S. nutrient pollution management. Marine Policy, 2021, 129, 104506.	3.2	32
11	A novel marine spatial management tool for multiple conflicts recognition and optimization of marine functional zoning in the East China sea. Journal of Environmental Management, 2021, 298, 113506.	7.8	6
12	First report on the swim bladder index, proximate composition, and fatty acid analysis of swim bladder from cultured Totoaba macdonaldi fed compound aquafeeds. Aquaculture Reports, 2021, 21, 100901.	1.7	3
13	Prepare developed democracies for long-run economic slowdowns. Nature Human Behaviour, 2021, 5, 1608-1621.	12.0	9
14	Cooperation as a solution to shared resources in territorial use rights in fisheries. Ecological Applications, 2020, 30, e02022.	3.8	8
15	The importance of cultural ecosystem services in natural resource-dependent communities: Implications for management. Ecosystem Services, 2020, 44, 101123.	5 . 4	18
16	Cold range edges of marine fishes track climate change better than warm edges. Global Change Biology, 2020, 26, 2908-2922.	9.5	66
17	Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics. Ecology, 2020, 101, e02993.	3.2	43
18	Ecological impacts of humanâ€induced animal behaviour change. Ecology Letters, 2020, 23, 1522-1536.	6.4	101

#	Article	IF	CITATIONS
19	Status and trends of moored fish aggregating device (MFAD) fisheries in the Caribbean and Bermuda. Marine Policy, 2020, 121, 104148.	3.2	8
20	A global network of marine protected areas for food. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28134-28139.	7.1	56
21	Let more big fish sink: Fisheries prevent blue carbon sequestration—half in unprofitable areas. Science Advances, 2020, 6, .	10.3	77
22	Calibrating Environmental DNA Metabarcoding to Conventional Surveys for Measuring Fish Species Richness. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	74
23	Trophic Redundancy and Predator Size Class Structure Drive Differences in Kelp Forest Ecosystem Dynamics. Bulletin of the Ecological Society of America, 2020, 101, e01682.	0.2	0
24	Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS ONE, 2020, 15, e0224347.	2.5	66
25	Opportunities for agentâ€based modelling in human dimensions of fisheries. Fish and Fisheries, 2020, 21, 570-587.	5.3	16
26	Latitude and protection affect decadal trends in reef trophic structure over a continental scale. Ecology and Evolution, 2020, 10, 6954-6966.	1.9	5
27	Design tradeâ€offs in rightsâ€based management of smallâ€scale fisheries. Conservation Biology, 2019, 33, 361-368.	4.7	10
28	Underestimating the benefits of marine protected areas for the replenishment of fished populations. Frontiers in Ecology and the Environment, 2019, 17, 407-413.	4.0	53
29	Fisheries governance in the face of climate change: Assessment of policy reform implications for Mexican fisheries. PLoS ONE, 2019, 14, e0222317.	2.5	18
30	A new narrative for the ocean. Science, 2019, 364, 911-911.	12.6	55
31	Designing MPAs for food security in open-access fisheries. Scientific Reports, 2019, 9, 8033.	3.3	31
32	When Do Ecosystem Services Depend on Rare Species?. Trends in Ecology and Evolution, 2019, 34, 746-758.	8.7	159
33	Optimal harvest responses to environmental forecasts depend on resource knowledge and how it can be used. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 1495-1502.	1.4	2
34	Organization Science improves management effectiveness of Marine Protected Areas. Journal of Environmental Management, 2019, 240, 285-292.	7.8	23
35	Broadly inflicted stressors can cause ecosystem thinning. Theoretical Ecology, 2019, 12, 207-223.	1.0	2
36	Looking to aquatic species for conservation farming success. Conservation Letters, 2019, 12, e12681.	5.7	6

#	Article	IF	CITATIONS
37	Leveraging satellite technology to create true shark sanctuaries. Conservation Letters, 2019, 12, e12610.	5.7	18
38	PISCO: Advances Made Through the Formation of a Large-Scale, Long-Term Consortium for Integrated Understanding of Coastal Ecosystem Dynamics. Oceanography, 2019, 32, 16-25.	1.0	7
39	Connecting Science to Policymakers, Managers, and Citizens. Oceanography, 2019, 32, 106-115.	1.0	9
40	The Science of Marine Reserves: A Series of Booklets and Graphics Connecting Science, Public Understanding, and Policy. Oceanography, 2019, 32, 104-105.	1.0	1
41	Ontogenetic shifts in predator diet drive tradeoffs between fisheries yield and strength of predator-prey interactions. Fisheries Research, 2018, 205, 11-20.	1.7	4
42	Biogeographic constraints to marine conservation in a changing climate. Annals of the New York Academy of Sciences, 2018, 1429, 5-17.	3.8	40
43	Comparative terrestrial feed and land use of an aquaculture-dominant world. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5295-5300.	7.1	164
44	Protecting marine mammals, turtles, and birds by rebuilding global fisheries. Science, 2018, 359, 1255-1258.	12.6	34
45	Rapid and lasting gains from solving illegal fishing. Nature Ecology and Evolution, 2018, 2, 650-658.	7.8	85
46	Linking home ranges to protected area size: The case study of the Mediterranean Sea. Biological Conservation, 2018, 221, 175-181.	4.1	64
47	Five rules for pragmatic blue growth. Marine Policy, 2018, 87, 331-339.	3.2	78
48	The cost of management delay: The case for reforming Mexican fisheries sooner rather than later. Marine Policy, 2018, 88, 1-10.	3.2	16
49	Improved fisheries management could offset many negative effects of climate change. Science Advances, 2018, 4, eaao1378.	10.3	168
50	The scale of life and its lessons for humanity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6328-6330.	7.1	8
51	Reply to â€ ⁻ Achieving sustainable and equitable fisheries requires nuanced policies not silver bullets'. Nature Ecology and Evolution, 2018, 2, 1335-1335.	7.8	0
52	Quality of a fished resource: Assessing spatial and temporal dynamics. PLoS ONE, 2018, 13, e0196864.	2.5	11
53	Offshore aquaculture in the United States: Untapped potential in need of smart policy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7162-7165.	7.1	65
54	Using people's perceptions of ecosystem services to guide modeling and management efforts. Science of the Total Environment, 2018, 637-638, 1014-1025.	8.0	38

#	Article	IF	Citations
55	Offshore aquaculture: Spatial planning principles for sustainable development. Ecology and Evolution, 2017, 7, 733-743.	1.9	128
56	Are Territorial Use Rights in Fisheries (TURFs) sufficiently large?. Marine Policy, 2017, 78, 189-195.	3.2	18
57	Resetting predator baselines in coral reef ecosystems. Scientific Reports, 2017, 7, 43131.	3.3	44
58	Protection of large predators in a marine reserve alters size-dependent prey mortality. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20161936.	2.6	33
59	Describing ecosystem contexts with singleâ€species models: a theoretical synthesis for fisheries. Fish and Fisheries, 2017, 18, 264-284.	5.3	11
60	Disentangling the effects of fishing and environmental forcing on demographic variation in an exploited species. Biological Conservation, 2017, 209, 488-498.	4.1	11
61	Range contraction enables harvesting to extinction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3945-3950.	7.1	53
62	High fishery catches through trophic cascades in China. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 717-721.	7.1	116
63	Mapping the global potential for marine aquaculture. Nature Ecology and Evolution, 2017, 1, 1317-1324.	7.8	327
64	Reply to Le Pape et al.: Management is key to preventing marine extinctions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6275-E6276.	7.1	3
65	Marine reserves solve an important bycatch problem in fisheries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8927-8934.	7.1	45
66	To what extent can ecosystem services motivate protecting biodiversity?. Ecology Letters, 2017, 20, 935-946.	6.4	45
67	Operationalizing Network Theory for Ecosystem Service Assessments. Trends in Ecology and Evolution, 2017, 32, 118-130.	8.7	103
68	Fisheries regulatory regimes and resilience to climate change. Ambio, 2017, 46, 399-412.	5 . 5	54
69	Drivers of redistribution of fishing and nonâ€fishing effort after the implementation of a marine protected area network. Ecological Applications, 2017, 27, 416-428.	3.8	37
70	Unexpected Management Choices When Accounting for Uncertainty in Ecosystem Service Tradeoff Analyses. Conservation Letters, 2017, 10, 422-430.	5 . 7	16
71	Compelling evidence: an influence on middle school students' accounts that may impact decision-making about socioscientific issues. Environmental Education Research, 2017, 23, 1115-1129.	2.9	14
72	Opportunism on the High Seas: Foraging Ecology of Olive Ridley Turtles in the Eastern Pacific Ocean. Frontiers in Marine Science, 2017, 4, .	2.5	26

#	Article	IF	CITATIONS
73	Growth and life history variability of the grey reef shark (Carcharhinus amblyrhynchos) across its range. PLoS ONE, 2017, 12, e0172370.	2.5	29
74	Effects of fish movement assumptions on the design of a marine protected area to protect an overfished stock. PLoS ONE, 2017, 12, e0186309.	2.5	9
75	Accounting for tourism benefits in marine reserve design. PLoS ONE, 2017, 12, e0190187.	2.5	21
76	Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California. Nature Communications, 2017, 8, 302.	12.8	91
77	Ecological effects of full and partial protection in the crowded Mediterranean Sea: a regional meta-analysis. Scientific Reports, 2017, 7, 8940.	3.3	138
78	Reply to Hilborn: Role of marine reserves depends on assumptions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10611.	7.1	1
79	Where Does River Runoff Matter for Coastal Marine Conservation?. Frontiers in Marine Science, 2016, 3, .	2.5	29
80	New England Cod Collapse and the Climate. PLoS ONE, 2016, 11, e0158487.	2.5	15
81	Expanding marine protected areas to include degraded coral reefs. Conservation Biology, 2016, 30, 1182-1191.	4.7	39
82	Remaining questions in the case for balanced harvesting. Fish and Fisheries, 2016, 17, 1216-1226.	5.3	39
83	U.S. seafood import restriction presents opportunity and risk. Science, 2016, 354, 1372-1374.	12.6	36
84	Factors driving the implementation of fishery reforms. Marine Policy, 2016, 71, 222-228.	3.2	6
85	Functional diversity of catch mitigates negative effects of temperature variability on fisheries yields. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161435.	2.6	33
86	Siting marine protected areas based on habitat quality and extent provides the greatest benefit to spatially structured metapopulations. Ecosphere, 2016, 7, e01533.	2.2	33
87	Global fishery prospects under contrasting management regimes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5125-5129.	7.1	485
88	Trophic cascades in an invaded ecosystem: native keystone predators facilitate a dominant invader in an estuarine community. Oikos, 2015, 124, 1282-1292.	2.7	13
89	Spatiotemporal variation in the relationship between landscape simplification and insecticide use. Ecological Applications, 2015, 25, 1976-1983.	3.8	14
90	Solutions for Recovering and Sustaining the Bounty of the Ocean: Combining Fishery Reforms, Rights-Based Fisheries Management, and Marine Reserves. Oceanography, 2015, 25, 252-263.	1.0	44

#	Article	IF	Citations
91	Managing mining of the deep seabed. Science, 2015, 349, 144-145.	12.6	187
92	â€~Organization Science': A new prospective to assess marine protected areas effectiveness. Ocean and Coastal Management, 2015, 116, 443-448.	4.4	9
93	Managing Bay and Estuarine Ecosystems for Multiple Services. Estuaries and Coasts, 2015, 38, 35-48.	2.2	32
94	Confronting Ambiguity in Science. The Science Teacher, 2015, 082, .	0.1	4
95	Removing biases in forecasts of fishery status. Journal of Bioeconomics, 2014, 16, 213-219.	3.3	5
96	Halpern et al. reply. Nature, 2013, 495, E7-E7.	27.8	4
97	Evaluating tradeoffs among ecosystem services to inform marine spatial planning. Marine Policy, 2013, 38, 80-89.	3.2	270
98	Forecasting fisheries collapse. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15859-15860.	7.1	6
99	Reconciling conflict between the direct and indirect effects of marine reserve protection. Environmental Conservation, 2012, 39, 225-236.	1.3	27
100	Habitat complexity impacts persistence and species interactions in an intertidal whelk. Marine Biology, 2012, 159, 2867-2874.	1.5	9
101	An index to assess the health and benefits of the global ocean. Nature, 2012, 488, 615-620.	27.8	736
102	Status and Solutions for the World's Unassessed Fisheries. Science, 2012, 338, 517-520.	12.6	621
103	New metrics for managing and sustaining the ocean's bounty. Marine Policy, 2012, 36, 303-306.	3.2	67
104	Do Behavioral Foraging Responses of Prey to Predators Function Similarly in Restored and Pristine Foodwebs?. PLoS ONE, 2012, 7, e32390.	2.5	12
105	Using portfolio theory to assess tradeoffs between return from natural capital and social equity across space. Biological Conservation, 2011, 144, 1499-1507.	4.1	35
106	Integrated Land-Sea Conservation Planning: The Missing Links. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 381-409.	8.3	181
107	Identifying critical regions in small-world marine metapopulations. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E907-13.	7.1	107
108	Key Features and Contextâ€Dependence of Fisheryâ€Induced Trophic Cascades. Conservation Biology, 2010, 24, 382-394.	4.7	63

#	Article	IF	Citations
109	Conservation management approaches to protecting the capacity for corals to respond to climate change: a theoretical comparison. Global Change Biology, 2010, 16, 1229-1246.	9.5	58
110	Fishing Indirectly Structures Macroalgal Assemblages by Altering Herbivore Behavior. American Naturalist, 2010, 176, 785-801.	2.1	72
111	Designing marine reserve networks for both conservation and fisheries management. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18286-18293.	7.1	689
112	Economic Incentives and Global Fisheries Sustainability. Annual Review of Resource Economics, 2010, 2, 299-318.	3.7	61
113	Evolving science of marine reserves: New developments and emerging research frontiers. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18251-18255.	7.1	146
114	Modelâ€based assessment of persistence in proposed marine protected area designs. Ecological Applications, 2009, 19, 433-448.	3.8	63
115	Spillover from marine reserves related to mechanisms of population regulation. Theoretical Ecology, 2008, 1, 117-127.	1.0	31
116	Seascape genetics and the spatial ecology of marine populations. Fish and Fisheries, 2008, 9, 363-377.	5.3	224
117	Marine reserve effects on fishery profit. Ecology Letters, 2008, 11, 370-379.	6.4	95
118	Can Catch Shares Prevent Fisheries Collapse?. Science, 2008, 321, 1678-1681.	12.6	693
119	Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1266-1271.	7.1	749
120	REPRODUCTION ON THE EDGE: LARGE-SCALE PATTERNS OF INDIVIDUAL PERFORMANCE IN A MARINE INVERTEBRATE. Ecology, 2007, 88, 2229-2239.	3.2	72
121	FISHING THE LINE NEAR MARINE RESERVES IN SINGLE AND MULTISPECIES FISHERIES. , 2007, 17, 1039-1054.		239
122	Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends in Ecology and Evolution, 2006, 21, 524-530.	8.7	426
123	Recruitment of intertidal invertebrates and oceanographic variability at Santa Cruz Island, California. Limnology and Oceanography, 2005, 50, 1473-1479.	3.1	66
124	Propagule dispersal and the scales of marine community process. Diversity and Distributions, 2005, 11, 139-148.	4.1	246
125	MARINE RESERVES EXPLOIT POPULATION STRUCTURE AND LIFE HISTORY IN POTENTIALLY IMPROVING FISHERIES YIELDS., 2005, 15, 2180-2191.		76
126	Habitat Size, Recruitment, and Longevity as Factors Limiting Population Size in Stageâ€Structured Species. American Naturalist, 2005, 165, 82-94.	2.1	76

#	Article	IF	Citations
127	MARINE RESERVE DESIGN AND THE EVOLUTION OF SIZE AT MATURATION IN HARVESTED FISH. , 2005, 15, 882-901.		112
128	CONFOUNDING EFFECTS OF THE EXPORT OF PRODUCTION AND THE DISPLACEMENT OF FISHING EFFORT FROM MARINE RESERVES. , 2004, 14, 1248-1256.		137
129	The limits to biogeographical distributions: insights from the northward range extension of the marine snail, Kelletia kelletii (Forbes, 1852). Journal of Biogeography, 2003, 30, 913-924.	3.0	163
130	POPULATION MODELS FOR MARINE RESERVE DESIGN: A RETROSPECTIVE AND PROSPECTIVE SYNTHESIS. , 2003, 13, 47-64.		309
131	Species diversity: from global decreases to local increases. Trends in Ecology and Evolution, 2003, 18, 561-566.	8.7	701
132	PROPAGULE DISPERSAL IN MARINE AND TERRESTRIAL ENVIRONMENTS: A COMMUNITY PERSPECTIVE. Ecology, 2003, 84, 2007-2020.	3.2	839
133	AVOIDING CURRENT OVERSIGHTS IN MARINE RESERVE DESIGN. , 2003, 13, 32-46.		223
134	ENSURING PERSISTENCE OF MARINE RESERVES: CATASTROPHES REQUIRE ADOPTING AN INSURANCE FACTOR. , 2003, 13, 8-24.		159
135	Spatial and temporal variability in size at settlement of intertidal mytilid mussels from around Pt. Conception, California. Invertebrate Reproduction and Development, 2002, 41, 171-177.	0.8	18
136	Geographical abundance distributions of coastal invertebrates: using one-dimensional ranges to test biogeographic hypotheses. Journal of Biogeography, 2002, 29, 985-997.	3.0	159
137	The 'abundant centre' distribution: to what extent is it a biogeographical rule?. Ecology Letters, 2002, 5, 137-147.	6.4	628
138	Temperature or Transport? Range Limits in Marine Species Mediated Solely by Flow. American Naturalist, 2000, 155, 769-789.	2.1	402
139	CAN RAPOPORT'S RULE BE RESCUED? MODELING CAUSES OF THE LATITUDINAL GRADIENT IN SPECIES RICHNESS. Ecology, 1999, 80, 2474-2482.	3.2	50
140	MAKING MOUNTAINS OUT OF BARNACLES: THE DYNAMICS OF ACORN BARNACLE HUMMOCKING. Ecology, 1998, 79, 1382-1394.	3.2	98
141	MAKING MOUNTAINS OUT OF BARNACLES: THE DYNAMICS OF ACORN BARNACLE HUMMOCKING. , 1998, 79, 1382.		1
142	Preparing Developed Democracies for Long-Run Economic Slowdowns. SSRN Electronic Journal, 0, , .	0.4	1
143	Dispersal and Geographic Ranges in the Sea. , 0, , 227-249.		21
144	Climate change and fishing are pulling the functional diversity of the world's largest marine fisheries to opposite extremes. Global Ecology and Biogeography, 0, , .	5.8	7