
Michael K C Tam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6034084/publications.pdf Version: 2024-02-01

ΜΙCHAEL Κ C ΤΛΜ

#	Article	IF	CITATIONS
1	Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. Canadian Journal of Chemical Engineering, 2011, 89, 1191-1206.	1.7	717
2	A Nitrogen and Sulfur Dualâ€Đoped Carbon Derived from Polyrhodanine@Cellulose for Advanced Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 6021-6028.	21.0	703
3	pH-Responsive polymers: synthesis, properties and applications. Soft Matter, 2008, 4, 435.	2.7	593
4	Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter, 2015, 11, 3512-3529.	2.7	486
5	Recent advances in the application of cellulose nanocrystals. Current Opinion in Colloid and Interface Science, 2017, 29, 32-45.	7.4	456
6	Functionalization of cellulose nanocrystals for advanced applications. Journal of Colloid and Interface Science, 2017, 494, 397-409.	9.4	351
7	Poly(N-isopropylacrylamide) Latices Prepared with Sodium Dodecyl Sulfate. Journal of Colloid and Interface Science, 1993, 156, 24-30.	9.4	314
8	A Structural Model of Hydrophobically Modified Urethaneâ^'Ethoxylate (HEUR) Associative Polymers in Shear Flows. Macromolecules, 1998, 31, 4149-4159.	4.8	280
9	Dual Responsive Pickering Emulsion Stabilized by Poly[2-(dimethylamino)ethyl methacrylate] Grafted Cellulose Nanocrystals. Biomacromolecules, 2014, 15, 3052-3060.	5.4	275
10	Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose, 2014, 21, 1655-1665.	4.9	272
11	Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose, 2015, 22, 3725-3738.	4.9	240
12	Gel Network Structure of Methylcellulose in Water. Langmuir, 2001, 17, 8062-8068.	3.5	226
13	Rheology and Dynamics of Associative Polymers in Shear and Extension:Â Theory and Experiments. Macromolecules, 2006, 39, 1981-1999.	4.8	219
14	Thermally Induced Association and Dissociation of Methylcellulose in Aqueous Solutions. Langmuir, 2002, 18, 7291-7298.	3.5	209
15	Insights on polymer surfactant complex structures during the binding of surfactants to polymers as measured by equilibrium and structural techniques. Chemical Society Reviews, 2006, 35, 693.	38.1	209
16	Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environmental Science: Nano, 2018, 5, 623-658.	4.3	206
17	Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study. Green Chemistry, 2017, 19, 4816-4828.	9.0	200
18	New Insights on the Interaction Mechanism within Oppositely Charged Polymer/Surfactant Systems. Langmuir, 2002, 18, 6484-6490.	3.5	184

#	Article	IF	CITATIONS
19	Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose, 2013, 20, 1747-1764.	4.9	181
20	Superposition of Oscillations on Steady Shear Flow as a Technique for Investigating the Structure of Associative Polymers. Macromolecules, 1997, 30, 1426-1433.	4.8	177
21	Hydroxyapatite nanostructure material derived using cationic surfactant as a template. Journal of Materials Chemistry, 2003, 13, 3053.	6.7	169
22	Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal. Carbohydrate Polymers, 2019, 208, 404-412.	10.2	168
23	Mussel-Inspired Green Metallization of Silver Nanoparticles on Cellulose Nanocrystals and Their Enhanced Catalytic Reduction of 4-Nitrophenol in the Presence of β-Cyclodextrin. Industrial & Engineering Chemistry Research, 2015, 54, 3299-3308.	3.7	164
24	Cellulose-based materials in wastewater treatment of petroleum industry. Green Energy and Environment, 2020, 5, 37-49.	8.7	159
25	Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohydrate Polymers, 2016, 136, 1194-1202.	10.2	158
26	Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks. ACS Nano, 2017, 11, 11091-11099.	14.6	154
27	3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink. Bioprinting, 2018, 9, 1-6.	5.8	154
28	Rheological Properties of Model Alkali-Soluble Associative (HASE) Polymers:  Effect of Varying Hydrophobe Chain Length. Macromolecules, 1997, 30, 3271-3282.	4.8	153
29	Complexation and release of doxorubicin from its complexes with pluronic P85-b-poly(acrylic acid) block copolymers. Journal of Controlled Release, 2007, 121, 137-145.	9.9	148
30	Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chemical Engineering Journal, 2020, 398, 125547.	12.7	148
31	Enhanced colloidal stability and antibacterial performance of silver nanoparticles/cellulose nanocrystal hybrids. Journal of Materials Chemistry B, 2015, 3, 603-611.	5.8	142
32	Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-sized calcium carbonate. Polymer, 2005, 46, 243-252.	3.8	138
33	Isothermal Titration Calorimetry Studies of Binding Interactions between Polyethylene Glycol and Ionic Surfactants. Journal of Physical Chemistry B, 2001, 105, 10759-10763.	2.6	134
34	Salt-Assisted and Salt-Suppressed Solâ^'Gel Transitions of Methylcellulose in Water. Langmuir, 2004, 20, 646-652.	3.5	133
35	Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications. Journal of Materials Chemistry B, 2018, 6, 864-883.	5.8	127
36	Synthesis of β-Cyclodextrin-Modified Cellulose Nanocrystals (CNCs)@Fe ₃ O ₄ @SiO ₂ Superparamagnetic Nanorods. ACS Sustainable Chemistry and Engineering, 2014, 2, 951-958.	6.7	124

#	Article	IF	CITATIONS
37	CO ₂ -Responsive Cellulose Nanofibers Aerogels for Switchable Oil–Water Separation. ACS Applied Materials & Interfaces, 2019, 11, 9367-9373.	8.0	123
38	Supramolecular Self-Assembly of 3D Conductive Cellulose Nanofiber Aerogels for Flexible Supercapacitors and Ultrasensitive Sensors. ACS Applied Materials & Interfaces, 2019, 11, 24435-24446.	8.0	120
39	Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chemical Engineering Journal, 2021, 417, 129237.	12.7	116
40	Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. Journal of Controlled Release, 2007, 120, 11-17.	9.9	115
41	Release kinetics of hydrophobic and hydrophilic model drugs from pluronic F127/poly(lactic acid) nanoparticles. Journal of Controlled Release, 2005, 103, 73-82.	9.9	114
42	Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems. Advances in Colloid and Interface Science, 2008, 136, 25-44.	14.7	114
43	Photochemical and Thermal Isomerizations of Azobenzene-Containing Amphiphilic Diblock Copolymers in Aqueous Micellar Aggregates and in Film. Macromolecules, 2005, 38, 3943-3948.	4.8	110
44	Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate. Acta Biomaterialia, 2007, 3, 251-254.	8.3	109
45	Sustained Drug Release in Nanomedicine: A Long-Acting Nanocarrier-Based Formulation for Glaucoma. ACS Nano, 2014, 8, 419-429.	14.6	108
46	Amphiphilic Cellulose Nanocrystals for Enhanced Pickering Emulsion Stabilization. Langmuir, 2018, 34, 12897-12905.	3.5	107
47	Shape recoverable and mechanically robust cellulose aerogel beads for efficient removal of copper ions. Chemical Engineering Journal, 2020, 392, 124821.	12.7	107
48	Synthesis and Aggregation Behavior of Pluronic F127/Poly(lactic acid) Block Copolymers in Aqueous Solutions. Macromolecules, 2003, 36, 9979-9985.	4.8	105
49	Interaction between Polyelectrolyte and Oppositely Charged Surfactant:Â Effect of Charge Density. Journal of Physical Chemistry B, 2004, 108, 8976-8982.	2.6	104
50	Interaction of Surfactants with Poly(N-isopropylacrylamide) Microgel Latexes. Langmuir, 1994, 10, 418-422.	3.5	102
51	Isothermal Titration Calorimetric Studies on the Temperature Dependence of Binding Interactions between Poly(propylene glycol)s and Sodium Dodecyl Sulfate. Langmuir, 2004, 20, 2177-2183.	3.5	101
52	Novel pH-Responsive Amphiphilic Diblock Copolymers with Reversible Micellization Properties. Langmuir, 2003, 19, 5175-5177.	3.5	100
53	Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications. Nanoscale, 2016, 8, 13288-13296.	5.6	98
54	Aggregation Behavior of C60-End-Capped Poly(ethylene oxide)s. Langmuir, 2003, 19, 4798-4803.	3.5	97

#	Article	IF	CITATIONS
55	Green acid-free hydrolysis of wasted pomelo peel to produce carboxylated cellulose nanofibers with super absorption/flocculation ability for environmental remediation materials. Chemical Engineering Journal, 2020, 395, 125070.	12.7	97
56	Simple Process To Produce High-Yield Cellulose Nanocrystals Using Recyclable Citric/Hydrochloric Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 4912-4923.	6.7	96
57	Cyclodextrin-assisted assembly of stimuli-responsive polymers in aqueous media. Soft Matter, 2010, 6, 4613.	2.7	95
58	New water soluble azobenzene-containing diblock copolymers: synthesis and aggregation behavior. Polymer, 2005, 46, 137-146.	3.8	94
59	Stimuli-Responsive Cellulose Nanocrystals for Surfactant-Free Oil Harvesting. Biomacromolecules, 2016, 17, 1748-1756.	5.4	93
60	Fluorescence Studies of an Alkaline Swellable Associative Polymer in Aqueous Solution. Langmuir, 1997, 13, 182-186.	3.5	90
61	Cost-effective and Scalable Chemical Synthesis of Conductive Cellulose Nanocrystals for High-performance Supercapacitors. Electrochimica Acta, 2014, 138, 139-147.	5.2	90
62	One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants. Scientific Reports, 2017, 7, 15811.	3.3	89
63	Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications. Journal of Materials Chemistry A, 2014, 2, 19268-19274.	10.3	88
64	Use of isothermal titration calorimetry to study surfactant aggregation in colloidal systems. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 999-1016.	2.4	88
65	Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nature Communications, 2019, 10, 4792.	12.8	88
66	Association Behavior of Poly(methacrylic acid)-block-poly(methyl methacrylate) in Aqueous Medium:Â Potentiometric and Laser Light Scattering Studies. Macromolecules, 2003, 36, 173-179.	4.8	87
67	Nitrogen-enriched porous carbon nanorods templated by cellulose nanocrystals as high performance supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 23768-23777.	10.3	87
68	Polyethylenimine-modified chitosan materials for the recovery of La(III) from leachates of bauxite residue. Chemical Engineering Journal, 2020, 388, 124307.	12.7	86
69	lsothermal Titration Calorimetric Studies on Interactions of Ionic Surfactant and Poly(oxypropylene)â^'Poly(oxyethylene)âr' Poly(oxypropylene) Triblock Copolymers in Aqueous Solutions. Macromolecules, 2001, 34, 7049-7055.	4.8	85
70	Natural Biodegradable Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Nanocomposites with Multifunctional Cellulose Nanocrystals/Graphene Oxide Hybrids for High-Performance Food Packaging. Journal of Agricultural and Food Chemistry, 2019, 67, 10954-10967.	5.2	85
71	Microencapsulation of Phase Change Materials with Polystyrene/Cellulose Nanocrystal Hybrid Shell via Pickering Emulsion Polymerization. ACS Sustainable Chemistry and Engineering, 2019, 7, 17756-17767.	6.7	84
72	Sustainable Catalysts from Gold-Loaded Polyamidoamine Dendrimer-Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2015, 3, 978-985.	6.7	83

#	Article	IF	CITATIONS
73	Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils. Chemical Engineering Journal, 2019, 366, 531-538.	12.7	82
74	Steady and Dynamic Shear Properties of Aqueous Polymer Solutions. Journal of Rheology, 1989, 33, 257-280.	2.6	81
75	Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates. Materials Research Bulletin, 2008, 43, 2318-2326.	5.2	80
76	A new pathway towards polymer modified cellulose nanocrystals via a "grafting onto―process for drug delivery. Polymer Chemistry, 2015, 6, 4206-4209.	3.9	80
77	Effects of salt on the intrinsic viscosity of model alkali-soluble associative polymers. Macromolecular Chemistry and Physics, 1998, 199, 1175-1184.	2.2	79
78	Lifetime and network relaxation time of a HEUR-C20 associative polymer system. Journal of Rheology, 2000, 44, 137-147.	2.6	78
79	Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics. Cellulose, 2019, 26, 7753-7767.	4.9	78
80	Applications of nanotechnology in oil and gas industry: Progress and perspective. Canadian Journal of Chemical Engineering, 2018, 96, 91-100.	1.7	77
81	Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts. Carbohydrate Polymers, 2018, 182, 61-68.	10.2	76
82	Synthesis and Characterization of Novel pH-Responsive Polyampholyte Microgels. Macromolecular Rapid Communications, 2006, 27, 522-528.	3.9	72
83	Cellulose nanocrystals in smart and stimuli-responsive materials: a review. Materials Today Advances, 2020, 5, 100055.	5.2	72
84	Microgel Iron Oxide Nanoparticles for Tracking Human Fetal Mesenchymal Stem Cells Through Magnetic Resonance Imaging. Stem Cells, 2009, 27, 1921-1931.	3.2	71
85	Rheological properties of hydrophobically modified alkali-soluble polymers?effects of ethylene-oxide chain length. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2275-2290.	2.1	69
86	Rheological properties of methacrylic acid/ethyl acrylate co-polymer: comparison between an unmodified and hydrophobically modified system. Polymer, 2001, 42, 249-259.	3.8	69
87	Water treatment technologies for the remediation of naphthenic acids in oil sands process-affected water. Chemical Engineering Journal, 2015, 279, 696-714.	12.7	69
88	Multibranch Strategy To Decorate Carboxyl Groups on Cellulose Nanocrystals To Prepare Adsorbent/Flocculants and Pickering Emulsions. ACS Sustainable Chemistry and Engineering, 2019, 7, 6969-6980.	6.7	69
89	Aggregation behavior of two-arm fullerene-containing poly(ethylene oxide). Polymer, 2003, 44, 2529-2536.	3.8	68
90	Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose Carbobydrate Polymers, 2012, 87, 101-109	10.2	68

#	Article	IF	CITATIONS
91	Polydopamine microcapsules from cellulose nanocrystal stabilized Pickering emulsions for essential oil and pesticide encapsulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 403-413.	4.7	68
92	Diffusion-Controlled Simultaneous Sensing and Scavenging of Heavy Metal Ions in Water Using Atomically Precise Cluster–Cellulose Nanocrystal Composites. ACS Sustainable Chemistry and Engineering, 2016, 4, 6167-6176.	6.7	67
93	Cellulose nanocrystal-poly(oligo(ethylene glycol) methacrylate) brushes with tunable LCSTs. Carbohydrate Polymers, 2016, 144, 215-222.	10.2	67
94	Nanoparticles of Short Cationic Peptidopolysaccharide Self-Assembled by Hydrogen Bonding with Antibacterial Effect against Multidrug-Resistant Bacteria. ACS Applied Materials & Interfaces, 2017, 9, 38288-38303.	8.0	67
95	Synthesis and thermal responsive properties of P(LA-b-EO-b-PO-b-EO-b-LA) block copolymers with short hydrophobic poly(lactic acid) (PLA) segments. Polymer, 2005, 46, 1841-1850.	3.8	66
96	Nanotemplating of Calcium Phosphate Using a Double-Hydrophilic Block Copolymer. Chemistry of Materials, 2005, 17, 4865-4872.	6.7	66
97	Polymeric Nanostructures for Drug Delivery Applications Based on Pluronic Copolymer Systems. Journal of Nanoscience and Nanotechnology, 2006, 6, 2638-2650.	0.9	66
98	A comparative study on grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization (ATRP) and activator re-generated by electron transfer ATRP. Carbohydrate Polymers, 2019, 205, 322-329.	10.2	66
99	Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohydrate Polymers, 2017, 157, 1821-1829.	10.2	65
100	Facile and Green Synthesis of Carboxylated Cellulose Nanocrystals as Efficient Adsorbents in Wastewater Treatments. ACS Sustainable Chemistry and Engineering, 2019, 7, 18067-18075.	6.7	65
101	Interactions between Methacrylic Acid/Ethyl Acrylate Copolymers and Dodecyltrimethylammonium Bromide. Journal of Physical Chemistry B, 2003, 107, 4667-4675.	2.6	64
102	Photoregulated Sol-Gel Transition of Novel Azobenzene-Functionalized Hydroxypropyl Methylcellulose and Its α -Cyclodextrin Complexes. Macromolecular Rapid Communications, 2004, 25, 678-682.	3.9	64
103	Enzyme-Degradable Self-Assembled Nanostructures from Polymer–Peptide Hybrids. Biomacromolecules, 2014, 15, 1882-1888.	5.4	63
104	Polyrhodanine Coated Cellulose Nanocrystals: A Sustainable Antimicrobial Agent. ACS Sustainable Chemistry and Engineering, 2015, 3, 1801-1809.	6.7	63
105	Controlled polymerizations of 2-(dialkylamino)ethyl methacrylates and their block copolymers in protic solvents at ambient temperature via ATRP. Journal of Polymer Science Part A, 2004, 42, 5161-5169.	2.3	62
106	Strategy for Synthesizing Porous Cellulose Nanocrystal Supported Metal Nanocatalysts. ACS Sustainable Chemistry and Engineering, 2016, 4, 5929-5935.	6.7	62
107	Phosphorylated-CNC/modified-chitosan nanocomplexes for the stabilization of Pickering emulsions. Carbohydrate Polymers, 2019, 206, 520-527.	10.2	61
108	Synthesis and Aggregation Behavior of Pluronic F87/Poly(acrylic acid) Block Copolymer in the Presence of Doxorubicin. Langmuir, 2007, 23, 2638-2646.	3.5	60

#	Article	IF	CITATIONS
109	Application of the central composite design to study the flocculation of an anionic azo dye using quaternized cellulose nanofibrils. Carbohydrate Polymers, 2015, 133, 80-89.	10.2	60
110	Self-healing stimuli-responsive cellulose nanocrystal hydrogels. Carbohydrate Polymers, 2020, 229, 115486.	10.2	60
111	Efficient mixing of viscoelastic fluids in a microchannel at low Reynolds number. Microfluidics and Nanofluidics, 2006, 3, 101-108.	2.2	59
112	Biocompatible and acid-cleavable poly(Îμ-caprolactone)-acetal-poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 doxorubicin delivery. Journal of Materials Chemistry B, 2013, 1, 6596.	0 627 Td (; 5.8	glycol)-acet 59
113	Inverse Pickering Emulsions Stabilized by Cinnamate Modified Cellulose Nanocrystals as Templates To Prepare Silica Colloidosomes. ACS Sustainable Chemistry and Engineering, 2018, 6, 2583-2590.	6.7	59
114	Evaluation of intrinsic viscosity measurements of hydrophobically modified polyelectrolyte solutions. European Polymer Journal, 1999, 35, 1245-1252.	5.4	58
115	Synthesis of amorphous calcium phosphate using various types of cyclodextrins. Materials Research Bulletin, 2007, 42, 820-827.	5.2	58
116	Evaluation of dialysis membrane process for quantifying the in vitro drug-release from colloidal drug carriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389, 299-303.	4.7	58
117	Comparative release studies of two cationic model drugs from different cellulose nanocrystal derivatives. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 207-215.	4.3	58
118	Synthesis of amine functionalized cellulose nanocrystals: optimization and characterization. Carbohydrate Research, 2015, 409, 48-55.	2.3	58
119	Self-Assembly Behavior of a Stimuli-Responsive Water-Soluble [60]Fullerene-Containing Polymer. Langmuir, 2004, 20, 8569-8575.	3.5	57
120	Synthesis and Self-Assembly Behavior of Four-Arm Poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf
121	Viscoelastic properties of hydrophobically modified alkali-soluble emulsion in salt solutions. Polymer, 1999, 40, 6369-6379.	3.8	56
122	Microstructure of Dilute Hydrophobically Modified Alkali Soluble Emulsion in Aqueous Salt Solution. Macromolecules, 2000, 33, 404-411.	4.8	56
123	Association Behavior of Biotinylated and Non-Biotinylated Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10	Tf 50 182	Td (oxide)-
124	Microstructure and rheological properties of thermo-responsive poly(N-isopropylacrylamide) microgels. Polymer, 2010, 51, 3238-3243.	3.8	56
125	UV-Absorbing Cellulose Nanocrystals as Functional Reinforcing Fillers in Poly(vinyl chloride) Films. ACS Applied Nano Materials, 2018, 1, 632-641.	5.0	56
126	Self-Assembly of Alkali-Soluble [60]Fullerene Containing Poly(methacrylic acid) in Aqueous Solution. Macromolecules, 2005, 38, 933-939.	4.8	55

#	Article	IF	CITATIONS
127	Polymeric hollow microcapsules (PHM) via cellulose nanocrystal stabilized Pickering emulsion polymerization. Journal of Colloid and Interface Science, 2019, 555, 489-497.	9.4	55
128	Efficient visible-light induced H2 evolution from T-CdxZn1-xS/defective MoS2 nano-hybrid with both bulk twinning homojunctions and interfacial heterostructures. Applied Catalysis B: Environmental, 2020, 267, 118702.	20.2	55
129	Poly(N-isopropylacrylamide). II. Effect of polymer concentration, temperature, and surfactant on the viscosity of aqueous solutions. Journal of Polymer Science Part A, 1993, 31, 963-969.	2.3	54
130	Calorimetric Studies of Model Hydrophobically Modified Alkali-Soluble Emulsion Polymers with Varying Spacer Chain Length in Ionic Surfactant Solutions. Macromolecules, 2000, 33, 1727-1733.	4.8	54
131	Control of burst release from nanogels via layer by layer assembly. Journal of Controlled Release, 2008, 128, 248-254.	9.9	54
132	Interactions of nanocrystalline cellulose with an oppositely charged surfactant in aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 310-319.	4.7	54
133	Self-Assembly Behavior of Thermoresponsive Oligo(ethylene glycol) Methacrylates Random Copolymer. ACS Macro Letters, 2012, 1, 632-635.	4.8	54
134	Thermo and light-responsive phase change nanofibers with high energy storage efficiency for energy storage and thermally regulated on–off drug release devices. Chemical Engineering Journal, 2019, 375, 121979.	12.7	54
135	Supramolecular Complexes of Azocellulose and α-Cyclodextrin: Isothermal Titration Calorimetric and Spectroscopic Studies. Macromolecules, 2005, 38, 2859-2864.	4.8	53
136	Poly(N-isopropylacrylamide). I. Interactions with sodium dodecyl sulfate measured by conductivity. Journal of Polymer Science Part A, 1993, 31, 957-962.	2.3	51
137	Preparation, characterization and novel photoregulated rheological properties of azobenzene functionalized cellulose derivatives and their α-CD complexes. Polymer, 2004, 45, 6219-6225.	3.8	51
138	Self-Assembly of Stimuli-Responsive Water-Soluble [60]Fullerene End-Capped Ampholytic Block Copolymer. Journal of Physical Chemistry B, 2005, 109, 4431-4438.	2.6	51
139	Structural and Energetic Studies on the Interaction of Cationic Surfactants and Cellulose Nanocrystals. Langmuir, 2016, 32, 689-698.	3.5	51
140	Light Scattering of Dilute Hydrophobically Modified Alkali-Soluble Emulsion Solutions:Â Effects of Hydrophobicity and Spacer Length of Macromonomer. Macromolecules, 2000, 33, 7021-7028.	4.8	50
141	Interactions between Poly(acrylic acid) and Sodium Dodecyl Sulfate:  Isothermal Titration Calorimetric and Surfactant Ion-Selective Electrode Studies. Journal of Physical Chemistry B, 2005, 109, 5156-5161.	2.6	50
142	Double stabilization mechanism of O/W Pickering emulsions using cationic nanofibrillated cellulose. Journal of Colloid and Interface Science, 2020, 574, 207-216.	9.4	50
143	Effect of fillers on the structure and mechanical properties of LCP/PP/SiO2 in-situ hybrid nanocomposites. Composites Science and Technology, 2003, 63, 339-346.	7.8	49

Clustering of magnetic nanoparticles using a double hydrophilic block copolymer, poly(ethylene) Tj ETQq0 0 0 rgBT/Qverlock $\frac{10}{49}$ Tf 50 6

ARTICLE IF CITATIONS Synthesis of an acid-labile polymeric prodrug DOX-acetal-PEG-acetal-DOX with high drug loading 145 49 content for pH-triggered intracellular drug release. Polymer Chemistry, 2015, 6, 4809-4818. Model Alkali-Soluble Associative (HASE) Polymers and Ionic Surfactant Interactions Examined by 146 3.5 48 Isothermal Titration Calorimetry. Langmuir, 2000, 16, 2151-2156. Aggregation Behavior and Thermodynamics of Binding between Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50,662 Synthesis and thermally responsive properties of novel Pluronic F87/polycaprolactone (PCL) block 148 2.6 48 cópolymers with short PCL blocks. Journal of Applied Polymer Science, 2006, 100, 4163-4172. Convenient characterization of polymers grafted on cellulose nanocrystals via SI-ATRP without chain cleavage. Carbohydrate Polymers, 2018, 199, 603-609. 149 10.2 48 Synthesis of hollow spherical calcium phosphate nanoparticles using polymeric nanotemplates. 150 2.6 47 Nanotechnology, 2006, 17, 5988-5994. Rheological properties of model alkali-soluble associative (HASE) polymer in ionic and non-ionic surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 154, 365-382. 46 The use of microgel iron oxide nanoparticles in studies of magnetic resonance relaxation and 152 11.4 46 endothelial progenitor cell labelling. Biomaterials, 2010, 31, 3296-3306. Crystallisation-driven self-assembly of poly(2-isopropyl-2-oxazoline)-block-poly(2-methyl-2-oxazoline) above the LCST. Soft Matter, 2015, 11, 3354-3359. 46 Novel design of Fe-Cu alloy coated cellulose nanocrystals with strong antibacterial ability and 154 10.2 46 efficient Pb2+ removal. Carbohydrate Polymers, 2020, 234, 115889. Viscometryâ€"a useful tool for studying conformational changes of poly(N-isopropylacrylamide) in 3.8 solutions. Polymer, 1992, 33, 436-438. Rheological Properties of Semidilute Hydrophobically Modified Alkali-Soluble Emulsion Polymers in 156 3.5 45 Sodium Dodecyl Sulfate and Salt Solutions. Langmuir, 2000, 16, 5600-5606. Controlled/living polymerization of 2-(diethylamino)ethyl methacrylate and its block copolymer withtert-butyl methacrylate by atom transfer radical polymerization. Journal of Polymer Science Part A, 2003, 41, 2688-2695. 2.3 Hydrolytic Degradation of Pluronic F127/Poly(lactic acid) Block Copolymer Nanoparticles. 158 4.8 45 Macromolecules, 2004, 37, 3425-3430. Fullerene Containing Polymers: A Review on Their Synthesis and Supramolecular Behavior in Solution. Journal of Nanoscience and Nanotechnology, 2007, 7, 1176-1196. \hat{I} +-Cyclodextrin-Induced Self-Assembly of a Double-Hydrophilic Block Copolymer in Aqueous Solution. 160 3.5 45 Langmuir, 2007, 23, 5106-5109. pH and redox responsive hydrogels and nanogels made from poly(2-ethyl-2-oxazoline). Polymer 45 Chemistry, 2013, 4, 4801.

MICHAEL K C TAM

45

162Encapsulation and controlled release of vitamin C in modified cellulose nanocrystal/chitosan
nanocapsules. Current Research in Food Science, 2021, 4, 215-223.5.8

#	Article	IF	CITATIONS
163	Comparative drug release studies of two cationic drugs from pH-responsive nanogels. European Journal of Pharmaceutical Sciences, 2007, 32, 340-348.	4.0	44
164	Reinforcement of rubber nanocomposite thin sheets by percolation of pristine cellulose nanocrystals. International Journal of Biological Macromolecules, 2020, 152, 428-436.	7.5	44
165	Double stimuli-responsive cellulose nanocrystals reinforced electrospun PHBV composites membrane for intelligent drug release. International Journal of Biological Macromolecules, 2020, 155, 330-339.	7.5	44
166	Binding Characteristics of Hydrophobic Ethoxylated Urethane (HEUR) and an Anionic Surfactant:Â Microcalorimetry and Laser Light Scattering Studies. Journal of Physical Chemistry B, 2001, 105, 10189-10196.	2.6	43
167	Extensional properties of model hydrophobically modified alkali-soluble associative (HASE) polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 2000, 92, 167-185.	2.4	42
168	Self-Assembly of Poly(ethylene oxide)- <i>block</i> -poly(acrylic acid) Induced by CaCl ₂ : Mechanistic Study. Langmuir, 2008, 24, 8501-8506.	3.5	41
169	Synthesis and characterization of pH-responsive and fluorescent poly (amidoamine) dendrimer-grafted cellulose nanocrystals. Journal of Colloid and Interface Science, 2015, 450, 101-108.	9.4	41
170	Water sorption studies of new pH-responsive N-acryloyl-N′-methyl piperazine and methyl methacrylate hydrogels. European Polymer Journal, 2001, 37, 1473-1478.	5.4	40
171	Dissolution Behavior of HASE Polymers in the Presence of Salt:  Potentiometric Titration, Isothermal Titration Calorimetry, and Light Scattering Studies. Journal of Physical Chemistry B, 2002, 106, 1195-1204.	2.6	40
172	Synthesis and Aggregation Behavior of Amphiphilic Block Copolymers in Aqueous Solution:Â Di- and Triblock Copolymers of Poly(ethylene oxide) and Poly(ethyl acrylate). Langmuir, 2004, 20, 1597-1604.	3.5	40
173	Cellulose Nanocrystal–ZnO Nanohybrids for Controlling Photocatalytic Activity and UV Protection in Cosmetic Formulation. ACS Omega, 2018, 3, 12403-12411.	3.5	40
174	Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses. Chemical Engineering Journal, 2022, 428, 131289.	12.7	40
175	Microstructure and rheology of stimuli-responsive microgel systems—effect of cross-linked density. Advances in Colloid and Interface Science, 2005, 113, 111-120.	14.7	39
176	Synthesis and aqueous solution properties of sterically stabilized pH-responsive polyampholyte microgels. Journal of Colloid and Interface Science, 2007, 309, 453-463.	9.4	39
177	Thermo- and photo-responsive polymeric systems. Soft Matter, 2009, , .	2.7	39
178	Designing Highly Luminescent Cellulose Nanocrystals with Modulated Morphology for Multifunctional Bioimaging Materials. ACS Applied Materials & Interfaces, 2019, 11, 48192-48201.	8.0	39
179	Effects of Temperature on the Flow Dynamics of a Model HASE Associative Polymer in Nonionic Surfactant Solutions. Langmuir, 1999, 15, 7537-7545.	3.5	38
180	PP/LCP composites: effects of shear flow, extensional flow and nanofillers. Composites Science and Technology, 2003, 63, 1921-1929.	7.8	38

#	Article	IF	CITATIONS
181	Application of drug selective electrode in the drug release study of pH-responsive microgels. Journal of Controlled Release, 2007, 118, 87-94.	9.9	38
182	Aggregation behavior of methacrylic acid/ethyl acrylate copolymer in dilute solutions. European Polymer Journal, 2000, 36, 2671-2677.	5.4	37
183	Association behavior of poly(methyl methacrylate-b-methacrylic acid-b-methyl methacrylate) in aqueous medium. Polymer, 2004, 45, 2781-2791.	3.8	36
184	Association Behavior of Poly(methyl methacrylate-block-methacrylic acid) in Aqueous Medium. Langmuir, 2004, 20, 2157-2163.	3.5	36
185	A Novel Amphiphilic Double-[60]Fullerene-Capped Triblock Copolymer. Macromolecules, 2005, 38, 9889-9893.	4.8	36
186	Carboxylated cellulose cryogel beads via a one-step ester crosslinking of maleic anhydride for copper ions removal. Carbohydrate Polymers, 2020, 242, 116397.	10.2	36
187	Sustainable and Versatile Superhydrophobic Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2022, 10, 5939-5948.	6.7	36
188	Studies of phase transition of aqueous solution of poly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetry and spectrophotometry. European Polymer Journal, 2001, 37, 1773-1778.	5.4	35
189	Novel approach to fibrillation of LCP in an LCP/PP blend. Journal of Applied Polymer Science, 2002, 86, 2070-2078.	2.6	35
190	Effect of nano-silica filler on the rheological and morphological properties of polypropylene/liquid-crystalline polymer blends. Journal of Applied Polymer Science, 2003, 87, 1484-1492.	2.6	35
191	Interfacial slip between polymer melts studied by confocal microscopy and rheological measurements. Journal of Rheology, 2003, 47, 795-807.	2.6	35
192	Synthesis and physicochemical properties of dual-responsive acrylic acid/butyl acrylate cross-linked nanogel systems. Journal of Colloid and Interface Science, 2019, 556, 313-323.	9.4	35
193	Comprehensive Insight into Degradation Mechanism of Green Biopolyester Nanocomposites Using Functionalized Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2019, 7, 15537-15547.	6.7	35
194	Simple Synthesis of Flower-like Manganese Dioxide Nanostructures on Cellulose Nanocrystals for High-Performance Supercapacitors and Wearable Electrodes. ACS Sustainable Chemistry and Engineering, 2019, 7, 11823-11831.	6.7	35
195	Sustainable Superhydrophobic Surface with Tunable Nanoscale Hydrophilicity for Water Harvesting Applications. Angewandte Chemie - International Edition, 2022, 61, .	13.8	35
196	A semi-empirical approach for modeling charged soft microgel particles. Journal of Rheology, 2004, 48, 915-926.	2.6	34
197	Controlled one-pot synthesis of pH-sensitive self-assembled diblock copolymers and their aggregation behavior. Polymer, 2005, 46, 10045-10055.	3.8	34
198	Morphological Transformation of [60]Fullerene-Containing Poly(Acrylic Acid) Induced by the Binding of Surfactant. Langmuir, 2006, 22, 2927-2930.	3.5	34

#	Article	IF	CITATIONS
199	Aldehyde-functional copolymers based on poly(2-oxazoline) for post-polymerization modification. European Polymer Journal, 2015, 62, 322-330.	5.4	34
200	Rheological properties of cellulose nanocrystal-polymeric systems. Cellulose, 2018, 25, 3229-3240.	4.9	34
201	Advancing the Use of Sustainability Metrics in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2018, 6, 1-1.	6.7	34
202	Cinnamateâ€Functionalized Cellulose Nanocrystals as UVâ€Shielding Nanofillers in Sunscreen and Transparent Polymer Films. Advanced Sustainable Systems, 2019, 3, 1800156.	5.3	34
203	Role of ionic species and valency on the steady shear behavior of partially hydrolyzed polyacrylamide solutions. Colloid and Polymer Science, 1990, 268, 911-920.	2.1	33
204	Thermoreversible gelation of hydroxypropylmethylcellulose in simulated body fluids. Carbohydrate Polymers, 2008, 72, 133-143.	10.2	33
205	Sustainable nanomaterials derived from polysaccharides and amphiphilic compounds. Soft Matter, 2013, 9, 7905.	2.7	33
206	Injectable supramolecular hydrogels fabricated from PEGylated doxorubicin prodrug and α-cyclodextrin for pH-triggered drug delivery. RSC Advances, 2015, 5, 54658-54666.	3.6	33
207	Versatile sensing devices for self-driven designated therapy based on robust breathable composite films. Nano Research, 2022, 15, 1027-1038.	10.4	33
208	Effect of a nonionic surfactant on the flow dynamics of a model HASE associative polymer. AICHE Journal, 1998, 44, 2756-2765.	3.6	32
209	Phase transition of aqueous solutions of poly(N , N -diethylacrylamide- co -acrylic acid) by differential scanning calorimetric and spectrophotometric methods. Colloid and Polymer Science, 2001, 279, 793-799.	2.1	32
210	Thermal debinding modeling of mass transport and deformation in powder-injection molding compact. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2002, 33, 477-488.	2.1	32
211	Self-Assembly Behavior of Poly(methacrylic acid-block-ethyl acrylate) Polymer in Aqueous Medium: Potentiometric Titration and Laser Light Scattering Studies. Journal of Physical Chemistry B, 2004, 108, 1621-1627.	2.6	32
212	Supramolecular Complex Induced by the Binding of Sodium Dodecyl Sulfate to PAMAM Dendrimers. Langmuir, 2007, 23, 1635-1639.	3.5	32
213	Interactions between surfactants and polymer-grafted nanocrystalline cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421, 142-149.	4.7	32
214	Solvent-Induced Large Compound Vesicle of [60]Fullerene Containing Poly(tert-butyl methacrylate). Langmuir, 2004, 20, 9882-9884.	3.5	31
215	Synthesis and Self-Assembly of [60]Fullerene Containing Sulfobetaine Polymer in Aqueous Solution. Journal of Physical Chemistry B, 2005, 109, 22791-22798.	2.6	31
216	Self-Assembly of Well-Defined Mono and Dual End-Capped C60Containing Polyacrylic Acids in Aqueous Solution. Langmuir, 2006, 22, 7167-7174.	3.5	31

#	Article	IF	CITATIONS
217	Temperature induced micellization and aggregation of biocompatible poly (oligo(ethylene) Tj ETQq1 1 0.784314 3446-3453.	rgBT /Ovei 3.8	lock 10 Tf 5 31
218	Swelling and shear viscosity of stimuli-responsive colloidal systems. Soft Matter, 2013, 9, 5319.	2.7	31
219	Isothermal Titration Calorimetric and Electromotive Force Studies on Binding Interactions of Hydrophobic Ethoxylated Urethane and Sodium Dodecyl Sulfate of Different Molecular Masses. Journal of Physical Chemistry B, 2004, 108, 4979-4988.	2.6	30
220	Microstructure and rheological properties of pH-responsive core–shell particles. Polymer, 2005, 46, 10066-10076.	3.8	30
221	Modified Cellulose Nanocrystal for Vitamin C Delivery. AAPS PharmSciTech, 2015, 16, 306-314.	3.3	30
222	Morphology and mechanical properties of poly(β-hydroxybutyrate)/poly(ε-caprolactone) blends controlled with cellulosic particles. Carbohydrate Polymers, 2017, 174, 217-225.	10.2	30
223	One-Step Synthesis of Cobaltâ`'Phthalocyanine/Iron Nanocomposite Particles with High Magnetic Susceptibility. Langmuir, 2002, 18, 4198-4204.	3.5	29
224	Dynamics and microstructure of charged soft nano-colloidal particles. Polymer, 2004, 45, 5515-5523.	3.8	29
225	Polymer-Induced Fractal Patterns of [60]Fullerene Containing Poly(methacrylic acid) in Salt Solutions. Langmuir, 2004, 20, 9901-9904.	3.5	29
226	Osmotic Compressibility of Soft Colloidal Systems. Langmuir, 2005, 21, 4283-4290.	3.5	29
227	Release kinetics of procaine hydrochloride (PrHy) from pH-responsive nanogels: Theory and experiments. International Journal of Pharmaceutics, 2008, 357, 305-313.	5.2	29
228	Non-invasive controlled release from gold nanoparticle integrated photo-responsive liposomes through pulse laser induced microbubble cavitation. Colloids and Surfaces B: Biointerfaces, 2015, 126, 569-574.	5.0	29
229	Microstructure and Rheology of Stimuli-Responsive Nanocolloidal SystemsEffect of Ionic Strength. Langmuir, 2004, 20, 11380-11386.	3.5	28
230	Self-assembly of C60 containing poly(methyl methacrylate) in ethyl acetate/decalin mixtures solvent. Polymer, 2005, 46, 4714-4721.	3.8	28
231	Rheological and microcalorimetric studies of a model alkali-soluble associative polymer (HASE) in nonionic surfactant solutions. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2019-2032.	2.1	27
232	Effects of shear rate, viscosity ratio and liquid crystalline polymer content on morphological and mechanical properties of polycarbonate and LCP blends. Polymer International, 2002, 51, 398-405.	3.1	27
233	Inverse Microemulsion Polymerization of Sterically Stabilized Polyampholyte Microgels. Langmuir, 2008, 24, 7698-7703.	3.5	27
234	Association Behavior of Star-Shaped pH-Responsive Block Copolymer: Four-Arm Poly(ethylene) Tj ETQq0 0 0 rgBT	/gverlock	10 Tf 50 62

#	Article	IF	CITATIONS
235	Tailored drug-release from multi-functional polymer-peptide hybrid vesicles. European Polymer Journal, 2015, 62, 363-373.	5.4	27
236	Potentiometric titration and dynamic light scattering of hydrophobically modified alkali soluble emulsion (HASE) polymer solutions. Physical Chemistry Chemical Physics, 2000, 2, 1967-1972.	2.8	26
237	Effect of Cosolvents on the Binding Interaction between Poly(ethylene oxide) and Sodium Dodecyl Sulfate. Journal of Physical Chemistry B, 2006, 110, 20794-20800.	2.6	26
238	Polyrhodanine coated cellulose nanocrystals as optical pH indicators. RSC Advances, 2014, 4, 60249-60252.	3.6	26
239	Improved correlation for shear-dependent viscosity of polyelectrolyte solutions. Journal of Non-Newtonian Fluid Mechanics, 1993, 46, 275-288.	2.4	25
240	INTERMITTENT CHAOTIC OPERATION IN SWITCHING POWER CONVERTERS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2004, 14, 2971-2978.	1.7	25
241	Poly(acrylic acid)- <i>block</i> -poly(<scp>l</scp> -valine):  Evaluation of β-Sheet Formation and Its Stability Using Circular Dichroism Technique. Biomacromolecules, 2007, 8, 2801-2808.	5.4	25
242	Synthesis of poly(acrylic acid)-block-poly(L-valine) hybrid through combined atom transfer radical polymerization, click chemistry, and nickel-catalyzed ring opening polymerization methods. Journal of Polymer Science Part A, 2007, 45, 2646-2656.	2.3	25
243	Highly sensitive self-healable strain biosensors based on robust transparent conductive nanocellulose nanocomposites: Relationship between percolated network and sensing mechanism. Biosensors and Bioelectronics, 2021, 191, 113467.	10.1	25
244	Osmotic energy generation with mechanically robust and oppositely charged cellulose nanocrystal intercalating GO membranes. Nano Energy, 2022, 98, 107291.	16.0	25
245	Dissolution behaviour of model alkali-soluble emulsion polymers: effects of molecular weights and ionic strength. Colloid and Polymer Science, 1999, 277, 1172-1178.	2.1	24
246	Flow behaviour and microstructure evolution in novel SiO2/PP/LCP ternary composites: effects of filler properties and mixing sequence. Polymer International, 2003, 52, 276-284.	3.1	24
247	Effect of shear heating during injection molding on the morphology of PC/LCP blends. Acta Materialia, 2003, 51, 6269-6276.	7.9	24
248	Rheological properties of hydrophobic ethoxylated urethane (HEUR) in the presence of methylated β-cyclodextrin. Polymer, 2004, 45, 8339-8348.	3.8	24
249	Laser light scattering and isothermal titration calorimetric studies of poly(ethylene oxide) aqueous solution in presence of sodium dodecyl sulfate. Journal of Colloid and Interface Science, 2005, 292, 79-85.	9.4	24
250	Effect of enzymatic degradation on the release kinetics of model drug from Pluronic F127/poly(lactic) Tj ETQq0 C	0 0 _d .gBT /C	overlock 10 Th
251	Poly(2-oxazoline)-Based Nanogels as Biocompatible Pseudopolypeptide Nanoparticles. Biomacromolecules, 2015, 16, 183-191.	5.4	24

252Enhanced radical scavenging activity of polyhydroxylated C60 functionalized cellulose nanocrystals.4.924252Cellulose, 2016, 23, 3589-3599.4.924

#	Article	IF	CITATIONS
253	Superhydrophobic surfaces from sustainable colloidal systems. Current Opinion in Colloid and Interface Science, 2022, 57, 101534.	7.4	24
254	Nanocellulose-based functional materials for advanced energy and sensor applications. Nano Research, 2022, 15, 7432-7452.	10.4	24
255	Stimuliâ€Responsive Waterâ€6oluble Fullerene (C ₆₀) Polymeric Systems. Macromolecular Rapid Communications, 2011, 32, 1863-1885.	3.9	23
256	Enhanced non-viral gene delivery by coordinated endosomal release and inhibition of β-tubulin deactylase. Nucleic Acids Research, 2017, 45, e38-e38.	14.5	23
257	Versatile nanocellulose-based nanohybrids: A promising-new class for active packaging applications. International Journal of Biological Macromolecules, 2021, 182, 1915-1930.	7.5	23
258	Network structure of a model HASE polymer in semidilute salt solutions. Journal of Applied Polymer Science, 2001, 79, 1486-1496.	2.6	22
259	Light Scattering of Hydrophobically Modified Alkali-Soluble Emulsion (HASE) Polymer: Ionic Strength and Temperature Effects. Macromolecular Chemistry and Physics, 2001, 202, 335-342.	2.2	22
260	Two-dimensional simulation of mass transport in polymer removal from a powder injection molding compact by thermal debinding. Journal of Materials Research, 2001, 16, 2436-2451.	2.6	22
261	Negative chromatography purification of hepatitis B virus-like particles using poly(oligo(ethylene) Tj ETQq1 10.7	'84314 rg	BT /Overlock
262	Polyplex formation between fourâ€arm poly(ethylene oxide)â€ <i>b</i> â€poly(2â€(diethylamino)ethyl) Tj ETQq0 2009, 91A, 708-718.	0 0 rgBT 4.0	/Overlock 10 21
263	Application of nanogel systems in the administration of local anesthetics. Local and Regional Anesthesia, 2010, 3, 93.	1.3	21
264	Hydration of Hydrophobic Iron–Carbonyl Homopolymers via Water–Carbonyl Interaction (WCI): Creation of Uniform Organometallic Aqueous Vesicles with Exceptionally High Encapsulation Capacity. Macromolecules, 2015, 48, 7968-7977.	4.8	21
265	Synthesis and Self-Assembly of Stimuli-Responsive Poly(2-(dimethylamino) ethyl) Tj ETQq1 1 0.784314 rgBT /Ove Induced by Free PDMAEMA Chains. Langmuir, 2011, 27, 6668-6673.	erlock 10 3.5	Tf 50 267 Td 20
266	Relaxation Spectra and Viscoelastic Behavior of a Model Hydrophobically Modified Alkali-Soluble Emulsion (HASE) Polymer in Salt/SDS Solutions. Journal of Colloid and Interface Science, 2000, 231, 52-58.	9.4	19
267	Simulation of polymer removal from a powder injection molding compact by thermal debinding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 2597-2606.	2.2	19
268	Dynamic Light Scattering of Semi-Dilute Hydrophobically Modified Alkali-Soluble Emulsion Solutions with Varying Length of Hydrophobic Alkyl Chains. Macromolecular Chemistry and Physics, 2002, 203, 2312-2321.	2.2	19
269	Isothermal titration calorimetric studies on the interaction between sodium dodecyl sulfate and polyethylene glycols of different molecular weights and chain architectures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 289, 200-206.	4.7	19
270	Negative chromatography of hepatitis B virus-like particle: Comparative study of different adsorbent designs. Journal of Chromatography A, 2016, 1445, 1-9.	3.7	19

#	Article	IF	CITATIONS
271	Flexible, anti-damage, and non-contact sensing electronic skin implanted with MWCNT to block public pathogens contact infection. Nano Research, 2022, 15, 2616-2625.	10.4	19
272	Electroconductive cellulose nanocrystals — Synthesis, properties and applications: A review. Carbohydrate Polymers, 2022, 289, 119419.	10.2	19
273	Microstructure of Dilute Telechelic Associative Polymer in Sodium Dodecyl Sulfate Solutions. Macromolecules, 2001, 34, 4673-4675.	4.8	18
274	Complexation between amine- and hydroxyl-terminated PAMAM dendrimers and sodium dodecyl sulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364, 49-54.	4.7	18
275	Effect of Molecular Architecture and Composition on the Aggregation Pathways of POEGMA Random Copolymers in Water. Langmuir, 2020, 36, 15018-15029.	3.5	18
276	Co(III)-Salen immobilized cellulose nanocrystals for efficient catalytic CO2 fixation into cyclic carbonates under mild conditions. Carbohydrate Polymers, 2021, 256, 117558.	10.2	18
277	Effect of compatibilization in injection-molded polycarbonate and liquid crystalline polymer blend. Journal of Applied Polymer Science, 2002, 84, 568-575.	2.6	17
278	Energy model of the interfacial slip of polymer blends under steady shear. Journal of Applied Polymer Science, 2003, 89, 1464-1470.	2.6	17
279	Correlating Transfection Barriers and Biophysical Properties of Cationic Polymethacrylates. Biomacromolecules, 2007, 8, 448-454.	5.4	17
280	Aqueous synthesis and biostabilization of CdS@ZnS quantum dots for bioimaging applications. Materials Research Express, 2015, 2, 105401.	1.6	17
281	The influence of fatty acid coating on the rheological and mechanical properties of thermoplastic polyurethane (TPU)/nano-sized precipitated calcium carbonate (NPCC) composites. Polymer Bulletin, 2006, 57, 575-586.	3.3	16
282	Determination and prediction of physical properties of cellulose nanocrystals from dynamic light scattering measurements. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	16
283	Carbodiimide coupling versus click chemistry for nanoparticle surface functionalization: A comparative study for the encapsulation of sodium cholate by cellulose nanocrystals modified with β-cyclodextrin. Carbohydrate Polymers, 2020, 244, 116512.	10.2	16
284	Functionalized cellulose nanocrystals as the performance regulators of poly(β-hydroxybutyrate-co-valerate) biocomposites. Carbohydrate Polymers, 2020, 242, 116399.	10.2	16
285	Synergistic complexation of phenol functionalized polymer induced <i>in situ</i> microfiber formation for 3D printing of marine-based hydrogels. Green Chemistry, 2022, 24, 2409-2422.	9.0	16
286	Sensitive, Stretchable, and Sustainable Conductive Cellulose Nanocrystal Composite for Human Motion Detection. ACS Sustainable Chemistry and Engineering, 2021, 9, 17351-17361.	6.7	16
287	In situ composites: effect of elongational flow velocity on thermotropic liquid crystalline co-polyester fibrillation in thermoplastic/TLCP systems. Composites Science and Technology, 2001, 61, 941-947.	7.8	15
288	Influence of the polarity of ethylene-vinyl acetate copolymers on the morphology and mechanical properties of their uncompatibilised blends with polystyrene. Polymer International, 2002, 51, 325-337.	3.1	15

#	Article	IF	CITATIONS
289	Hydrogen Bonded Assembly of Poly(acrylic acid)-block-poly(l-valine) in Dilute Solutions. Macromolecules, 2007, 40, 9064-9073.	4.8	15
290	Interactions between a Series of Pyrene End-Labeled Poly(ethylene oxide)s and Sodium Dodecyl Sulfate in Aqueous Solution Probed by Fluorescence. Langmuir, 2014, 30, 13164-13175.	3.5	15
291	Controlled coagulation and redispersion of thermoresponsive poly di(ethylene oxide) methyl ether methacrylate grafted cellulose nanocrystals. Journal of Colloid and Interface Science, 2019, 538, 51-61.	9.4	15
292	β-Cyclodextrin functionalized magnetic nanoparticles for the removal of pharmaceutical residues in drinking water. Journal of Industrial and Engineering Chemistry, 2022, 109, 461-474.	5.8	15
293	Interaction between Fluorocarbon End-Capped Poly(ethylene oxide) and Cyclodextrins. Macromolecules, 2007, 40, 2936-2945.	4.8	14
294	Thermo-responsive adsorbent for size-selective protein adsorption. Journal of Chromatography A, 2015, 1394, 71-80.	3.7	14
295	Removal of 2â€naphthoxyacetic acid from aqueous solution using quaternized chitosan beads. Canadian Journal of Chemical Engineering, 2017, 95, 21-32.	1.7	14
296	β-Cyclodextrin-Functionalized Cellulose Nanocrystals and Their Interactions with Surfactants. ACS Omega, 2019, 4, 2102-2110.	3.5	14
297	Functional cellulose nanocrystals containing cationic and thermo-responsive polymer brushes. Carbohydrate Polymers, 2020, 246, 116651.	10.2	14
298	Fishing for the right probiotic: host–microbe interactions at the interface of effective aquaculture strategies. FEMS Microbiology Reviews, 2021, 45, .	8.6	14
299	Metal injection molding: effects of the vinyl acetate content on binder behavior. Journal of Materials Processing Technology, 1997, 67, 120-125.	6.3	13
300	Stability of a model alkali-soluble associative polymer in the presence of a weak and a strong base. Colloid and Polymer Science, 1999, 277, 276-281.	2.1	13
301	Interfacial properties of polycarbonate/liquid-crystal polymer and polystyrene/high-impact polystyrene polymer pairs under shear deformation. Journal of Applied Polymer Science, 2003, 87, 258-269.	2.6	13
302	Binding of Dodecyltrimethylammonium Bromide to pH-Responsive Nanocolloids Containing Cross-Linked Methacrylic Acidâ^'Ethyl Acrylate Copolymers. Langmuir, 2004, 20, 7933-7939.	3.5	13
303	Rheological properties of hydrophobically modified polyelectrolyte systems: Concentration effects. Journal of Applied Polymer Science, 2006, 102, 5166-5173.	2.6	13
304	A wavelet-based piecewise approach for steady-state analysis of power electronics circuits. International Journal of Circuit Theory and Applications, 2006, 34, 559-582.	2.0	13
305	Binding and release studies of a cationic drug from a star-shaped four-arm poly(ethylene) Tj ETQq1 1 0.784314 r	gBT /Over	ock 10 Tf 50
306	Bile Acid Sequestrants for Hypercholesterolemia Treatment Using Sustainable Biopolymers: Recent Advances and Future Perspectives. Molecular Pharmaceutics, 2022, 19, 1248-1272.	4.6	13

#	Article	IF	CITATIONS
307	Relationship between processing, microstructure, and mechanical properties of injection molded thermotropic LCP. Journal of Applied Polymer Science, 2003, 88, 1713-1718.	2.6	12
308	Relaxation of liquid-crystalline polymer fibers in polycarbonate-liquid-crystalline polymer blend system. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2307-2312.	2.1	12
309	Rheology and Aggregation Behavior of Hydrophobically Modified Urethane Ethoxylate in Ethylene Glycolâ ʿWater Mixtures. Macromolecules, 2003, 36, 6260-6266.	4.8	12
310	Dissolution and Swelling Behaviors of Random and Cross-Linked Methacrylic Acidâ^'Ethyl Acrylate Copolymers. Langmuir, 2005, 21, 4191-4199.	3.5	12
311	Dual physically and chemically cross-linked polyelectrolyte nanohydrogels: Compositional and pH-dependent behavior studies. European Polymer Journal, 2020, 122, 109398.	5.4	12
312	Dye Removal Using Sustainable Membrane Adsorbents Produced from Melamine Formaldehydeâ^`Cellulose Nanocrystals and Hard Wood Pulp. Industrial & Engineering Chemistry Research, 2020, 59, 20854-20865.	3.7	12
313	Relaxation behavior of hydrophobically modified polyelectrolyte solution under various deformations. Polymer, 2005, 46, 4052-4059.	3.8	11
314	Rheological Behavior of Acid-Swellable Cationic Copolymer Latexes. Langmuir, 2010, 26, 2736-2744.	3.5	11
315	Stabilization of polyamidoamine (PAMAM) dendrimers/sodium dodecyl sulfate complexes via PEGylation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380, 47-52.	4.7	11
316	Dissociation and thermal characteristics of poly(acrylic acid) modified pluronic block copolymers in aqueous solution. Polymer, 2014, 55, 3886-3893.	3.8	11
317	Cross-linked Pluronic- g -Polyacrylic acid microgel system for the controlled release of doxorubicin in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 230-238.	4.3	11
318	A low viscosity, highly elastic ideal fluid. Journal of Non-Newtonian Fluid Mechanics, 1989, 31, 163-177.	2.4	10
319	Interfacial slip at the thermotropic liquid-crystalline polymer/poly (ethylene naphthalate) interface. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 302-315.	2.1	10
320	Interaction between Silicates and Ionic Surfactants in Dilute Solution. Langmuir, 2006, 22, 1493-1499.	3.5	10
321	Stimuli-responsive hydrogel consisting of hydrazide-functionalized poly(oligo(ethylene) Tj ETQq1 1 0.784314 rgB	T /Overloc	:k 10 Tf 50
322	Emulsions undergoing phase transition: Effect of emulsifier type and concentration. Journal of Colloid and Interface Science, 2022, 617, 214-223.	9.4	10
323	Ideal elastic fluids of different viscosity and elasticity levels. Rheologica Acta, 1989, 28, 112-120.	2.4	9
324	Yield stress behaviour of metal injection moulding suspensions at elevated temperatures. Journal of Materials Science, 1995, 30, 3625-3632.	3.7	9

#	Article	IF	CITATIONS
325	Influence of the molecular weight of ethylene vinyl acetate copolymers on the flow and mechanical properties of uncompatibilized polystyrene/ethylene-vinyl acetate copolymer blends. Polymer International, 2001, 50, 95-106.	3.1	9
326	Mechanical properties and morphology of LCP/ABS blends compatibilized with a styrene-maleic anhydride copolymer. Polymer International, 2003, 52, 733-739.	3.1	9
327	Supramolecular Complex of [60]Fullerene-Grafted Polyelectrolyte and Surfactant:  Mechanism and Nanostructures. Langmuir, 2007, 23, 8798-8805.	3.5	9
328	Comparison between the selfâ€assembling behaviors of PLLAâ€PEOâ€PLLA triblock copolymers and PLLAâ€PEOâ€PPOâ€PEOâ€PLLA pentablock copolymers. Journal of Applied Polymer Science, 2009, 111, 2445-24	5 ^{2.6}	9
329	ARGET ATRP of Triblock Copolymers (PMMA-b-PEO-b-PMMA) and Their Microstructure in Aqueous Solution. ACS Omega, 2018, 3, 15996-16004.	3.5	9
330	Expectations for Papers on Sustainable Materials in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 1703-1704.	6.7	9
331	Synthesis and characterization of modified cellulose nanofibril organosilica aerogels for the removal of anionic dye. Journal of Polymer Research, 2022, 29, .	2.4	9
332	Simulation of Particle Migration of Powder-Resin System in Injection Molding. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2003, 125, 538-547.	2.2	8
333	Simulation of thermal debinding: effects of mass transport on equivalent stress. Computational Materials Science, 2004, 30, 496-503.	3.0	8
334	Rheological Properties of a Telechelic Associative Polymer in the Presence of α- and Methylated β-Cyclodextrins. Journal of Physical Chemistry B, 2007, 111, 371-378.	2.6	8
335	Dual Polarization Interferometric Analysis on the Interaction between Fullerene Grafted Polymer and Nonionic Surfactants. Langmuir, 2009, 25, 9898-9902.	3.5	8
336	Influence of anionic surfactant on the rheological properties of hydrophobically modified polyethylene-oxide/cyclodextrin inclusion complexes. Journal of Rheology, 2009, 53, 293-308.	2.6	8
337	αâ€cyclodextrin assisted selfâ€assembly of poly(ethylene glycol)â€blockâ€poly(<i>N</i> â€isopropylacrylamide) i aqueous media. Journal of Applied Polymer Science, 2013, 127, 4785-4794.	n 2.6	8
338	Four Years of ACS Sustainable Chemistry & Engineering: Reflections and New Developments. ACS Sustainable Chemistry and Engineering, 2017, 5, 1-2.	6.7	8
339	Comments on the accuracy of zero shear intrinsic viscosity of high molecular weight polyacrylamide. Polymer International, 1991, 24, 15-22.	3.1	7
340	Rheological properties of hydrophobically modified alkali-swellable acrysol emulsions. Journal of Polymer Research, 1996, 3, 201-209.	2.4	7
341	Rheological and mechanical properties of compatibilized polystyrene/ethylene vinyl acetate blends. Journal of Applied Polymer Science, 2004, 94, 2071-2082.	2.6	7
342	Dynamic light scattering of semidilute hydrophobically modified alkali-soluble emulsion solutions with different lengths of poly(ethylene oxide) spacer chain. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3288-3298.	2.1	7

#	Article	IF	CITATIONS
343	Self-assembly of thermo-responsive poly(oligo(ethylene glycol) methyl ether methacrylate)-C60 in water-methanol mixtures. Polymer, 2011, 52, 3769-3775.	3.8	7
344	Inclusion Complexation between α-Cyclodextrin and Oligo(ethylene glycol) Methyl Ether Methacrylate. ACS Omega, 2020, 5, 9517-9528.	3.5	7
345	Sticky Hydrogels from Hydrazide-Functionalized Poly(oligo(ethylene glycol) methacrylate) and Dialdehyde Cellulose Nanocrystals with Tunable Thermal and Strain-Hardening Characteristics. ACS Sustainable Chemistry and Engineering, 2021, 9, 10424-10430.	6.7	7
346	A general correlation for turbulent velocity profiles of dilute polymer solutions. Journal of Hydraulic Research/De Recherches Hydrauliques, 1992, 30, 117-142.	1.7	6
347	Rheology of Water-Soluble Polymers: A Comparative Study on the Effect of Monovalent Salt. Polymer-Plastics Technology and Engineering, 1993, 32, 123-138.	1.9	6
348	Rheological Properties of Poly(ethylene oxide) in Anionic Surfactant Solutions. Advances in Chemistry Series, 1996, , 205-217.	0.6	6
349	Effects of convergent flow onin situ fibrillation of TLCP in PEN. Journal of Applied Polymer Science, 2004, 91, 1505-1513.	2.6	6
350	Microstructure of Un-neutralized Hydrophobically Modified Alkali-Soluble Emulsion Latex in Different Surfactant Solutions. Langmuir, 2005, 21, 7136-7142.	3.5	6
351	The Evolution of ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 1-1.	6.7	6
352	Nanopesticides: From the Bench to the Market. , 2020, , 317-348.		6
353	Experimental Investigation of Shear-Induced Particle Migration in Steady-State Isothermic Extrusion. Nihon Reoroji Gakkaishi, 2003, 31, 165-173.	1.0	6
354	Morphology and mechanical properties of reactive compatibilized polystyrene/ethylene-vinyl acetate-vinyl alcohol blends. Journal of Applied Polymer Science, 2002, 85, 209-217.	2.6	5
355	Non-linear shear deformation of hydrophobically modified polyelectrolyte systems. Polymer, 2006, 47, 6731-6737.	3.8	5
356	Analysis of particle–solvent interactions in pH-responsive cross-linked microgel systems. Polymer, 2007, 48, 6589-6597.	3.8	5
357	Further studies on the rheological properties of hydrophobically modified polyelectrolyte systems: effect of varying degree of ethoxylation. Polymer International, 2007, 56, 569-575.	3.1	5
358	Why Wasn't My <i>ACS Sustainable Chemistry & Engineering</i> Manuscript Sent Out for Review?. ACS Sustainable Chemistry and Engineering, 2019, 7, 1-2.	6.7	5
359	Interfacial Control of the Synthesis of Cellulose Nanocrystal Gold Nanoshells. Langmuir, 2020, 36, 11215-11224.	3.5	5
360	Lightweight Nanofibrous Crosslinked Composite Aerogels with Controllable Shapes and Superelasticity for Pressure Sensors. Macromolecular Materials and Engineering, 2022, 307, .	3.6	5

#	Article	IF	CITATIONS
361	A general correlation for purely viscous nonâ€newtonian fluids flowing in ducts of arbitrary crossâ€section. Canadian Journal of Chemical Engineering, 1988, 66, 542-549.	1.7	4
362	A phenomenological model for dynamic properties of dilute polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 1989, 33, 165-180.	2.4	4
363	Role of ionic species and valency on the viscoelastic properties of partially hydrolyzed polyacrylamide solutions. Colloid and Polymer Science, 1994, 272, 516-522.	2.1	4
364	Mechanical, morphological, and thermal properties of poly(ethylene 2,6-naphthalate) and copolyester LCP blends. Journal of Applied Polymer Science, 2001, 82, 477-488.	2.6	4
365	Thermal properties of hydrophobically modified methacrylic acid-ethyl acrylate copolymer solutions. Journal of Applied Polymer Science, 2004, 94, 604-612.	2.6	4
366	CuOx nanotubes via an unusual complexation induced block copolymer-like self-assembly of poly(acrylic acid). RSC Advances, 2012, 2, 9531.	3.6	4
367	Binding of cationic surfactants to a thermo-sensitive copolymer below and above its cloud point. Journal of Colloid and Interface Science, 2013, 412, 17-23.	9.4	4
368	Detection and characterization of hemoglobin dissociation and aggregation using microcalorimetry. Journal of Thermal Analysis and Calorimetry, 2014, 115, 2159-2169.	3.6	4
369	Drug release kinetics of pHâ€responsive microgels of different glassâ€transition temperatures. Journal of Applied Polymer Science, 2019, 136, 47284.	2.6	4
370	Sustainable Superhydrophobic Surface with Tunable Nanoscale Hydrophilicity for Water Harvesting Applications. Angewandte Chemie, 2022, 134, .	2.0	4
371	Effect of Oil Phase Transition on the Stability of Pickering Emulsions Stabilized by Cellulose Nanocrystals. Langmuir, 2022, 38, 2737-2745.	3.5	4
372	Effect of hydrophobic modification of cellulose nanocrystal (CNC) and salt addition on Pickering emulsions undergoing phase-transition. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100201.	2.6	4
373	Molecular interpretation of the behaviour of polyisobutylene in different solvents. Rheologica Acta, 1990, 29, 117-126.	2.4	3
374	Modified cox-merz rule for charged polymer systems in solution. Journal of Macromolecular Science - Physics, 1994, 33, 173-184.	1.0	3
375	The Network Strength and Junction Density of a Model HASE Polymer in Non-Ionic Surfactant Solutions. ACS Symposium Series, 2000, , 351-368.	0.5	3
376	Energy-based predictive criterion for LCP fibrillation in LCP/thermoplastic polymer blends under shear. Journal of Applied Polymer Science, 2003, 90, 3314-3324.	2.6	3
377	Factors governing in situ fibre formation in LCP/PC blendsâ~†. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1033-1038.	7.6	3
378	Thermodynamics of Micellization of β-Sheet Forming Poly(acrylic acid)-block-poly(l-valine) Hybrids. Journal of Physical Chemistry B, 2008, 112, 11542-11550.	2.6	3

#	Article	IF	CITATIONS
379	Complexation between α-Cyclodextrin and PEGylated-PAMAM Dendrimers at Low and High pH Values. Langmuir, 2010, 26, 17969-17974.	3.5	3
380	Self-Assembly of Poly(L-glutamate)-block-poly(2-(diethylamino)ethyl methacrylate) in Aqueous Solutions. Australian Journal of Chemistry, 2011, 64, 1247.	0.9	3
381	The Use of Nano-Polysaccharides in Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2019, , 171-219.	1.0	3
382	Robust visible-light photocatalytic H ₂ evolution on 2D RGO/Cd _{0.15} Zn _{0.85} In ₂ S ₄ –Ni ₂ P hierarchitectures. Catalysis Science and Technology, 2022, 12, 4181-4192.	4.1	3
383	Numerical and experimental investigation of thermal debinding. Powder Metallurgy, 2002, 45, 233-236.	1.7	2
384	Special series of articles on Nanotechnology. Canadian Journal of Chemical Engineering, 2011, 89, 1-1.	1.7	2
385	Expectations for Manuscripts in ACS Sustainable Chemistry & Engineering: Scope Summary and Call for Creativity. ACS Sustainable Chemistry and Engineering, 2020, 8, 16046-16047.	6.7	2
386	Expectations for Manuscripts on Biomass Feedstocks and Processing in <i>ACS Sustainable Chemistry & amp; Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 11031-11032.	6.7	2
387	Shaping Effective Practices for Incorporating Sustainability Assessment in Manuscripts Submitted to ACS Sustainable Chemistry & Engineering: Biomaterials. ACS Sustainable Chemistry and Engineering, 2021, 9, 7400-7402.	6.7	2
388	Remarks on the Shear-Thickening Behavior of Dilute Polymer Solutions. Polymer-Plastics Technology and Engineering, 1991, 30, 145-162.	1.9	1
389	PRECIPITATION OF CALCIUM PHOSPHATE IN THE PRESENCE OF DOUBLE HYDROPHILIC BLOCK COPOLYMER PEO-b-PMAA. International Journal of Nanoscience, 2005, 04, 731-736.	0.7	1
390	Rheological and microcalorimetric studies of a model alkali-soluble associative polymer (HASE) in nonionic surfactant solutions. , 0, .		1
391	A General Correlation between Steady Shear and Dynamic Properties of Dilute Polymer Solutions at Zero Shear and Frequency Conditions. Nihon Reoroji Gakkaishi, 1991, 19, 98-105.	1.0	1
392	Building Pathways to a Sustainable Planet. ACS Sustainable Chemistry and Engineering, 2022, 10, 1-2.	6.7	1
393	Expectations for Perspectives in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 16528-16530.	6.7	1
394	Modeling of Thermo-Responsive Stiffening of Poly(oligo(ethylene glycol)methacrylate)–Cellulose Nanocrystal Hydrogels. ACS Applied Polymer Materials, 2022, 4, 2674-2682.	4.4	1
395	Physicochemical Properties of Inorganic Nanopesticides/Nanofertilizers in Aqueous Media and Tank Mixtures. , 2022, , 253-270.		1
396	A general correlation between steady shear and dynamic properties of dilute polymer solutions at zero shear and frequency conditions (abstract). Journal of Rheology, 1992, 36, 988-988.	2.6	0

#	Article	IF	CITATIONS
397	Nano-fractals from inorganic salts induced by fullerene polymer systems. International Journal of Nanotechnology, 2007, 4, 377.	0.2	0
398	Macromol. Rapid Commun. 23/2011. Macromolecular Rapid Communications, 2011, 32, 1935-1935.	3.9	0
399	UV–vis spectra as an alternative to the Lowry method for quantify hair damage induced by surfactants. Colloids and Surfaces B: Biointerfaces, 2014, 123, 326-330.	5.0	0
400	Remembering Professor, Academician, and Editor Lina Zhang. ACS Sustainable Chemistry and Engineering, 2020, 8, 16385-16385.	6.7	0
401	The Changing Structure of Scientific Communication: Expanding the Nature of Letters Submissions to ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 8469-8470.	6.7	0