Sergio Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6034037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Biobanks in the Fight against COVID-19 Pandemic: The Portuguese Response. Acta Medica Portuguesa, 2021, 35, .	0.4	0
2	Modulating the Metabolic Phenotype of Cancer Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1219, 403-411.	1.6	2
3	An antisense transcript mediates MALAT1 response in human breast cancer. BMC Cancer, 2019, 19, 771.	2.6	31
4	Angiogenesis – Vessels Recruitment by Tumor Cells. Learning Materials in Biosciences, 2019, , 141-157.	0.4	1
5	Meeting the needs of breast cancer: A nucleolin's perspective. Critical Reviews in Oncology/Hematology, 2018, 125, 89-101.	4.4	32
6	Low-Density Lipoprotein Uptake Inhibits the Activation and Antitumor Functions of Human Vγ9Vδ2 T Cells. Cancer Immunology Research, 2018, 6, 448-457.	3.4	25
7	Therapeutic Implications of the Molecular and Immune Landscape of Triple-Negative Breast Cancer. Pathology and Oncology Research, 2018, 24, 701-716.	1.9	17
8	VEGFR2–Mediated Reprogramming of Mitochondrial Metabolism Regulates the Sensitivity of Acute Myeloid Leukemia to Chemotherapy. Cancer Research, 2018, 78, 731-741.	0.9	32
9	VEGF signaling in acute leukemia: mitochondrial connections. Oncoscience, 2018, 5, 54-56.	2.2	1
10	Monocarboxylate transporter 1 (MCT1), a tool to stratify acute myeloid leukemia (AML) patients and a vehicle to kill cancer cells. Oncotarget, 2017, 8, 82803-82823.	1.8	20
11	Effects of transplanted circulating endothelial progenitor cells and platelet microparticles in atherosclerosis development. Biology of the Cell, 2016, 108, 219-243.	2.0	30
12	Trypanosoma brucei Parasites Occupy and Functionally Adapt to the Adipose Tissue in Mice. Cell Host and Microbe, 2016, 19, 837-848.	11.0	288
13	The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment. Pflugers Archiv European Journal of Physiology, 2016, 468, 919-932.	2.8	25
14	STAT3:FOXM1 and MCT1 drive uterine cervix carcinoma fitness to a lactate-rich microenvironment. Tumor Biology, 2016, 37, 5385-5395.	1.8	18
15	LDL-Cholesterol Increases the Transcytosis of Molecules through Endothelial Monolayers. PLoS ONE, 2016, 11, e0163988.	2.5	6
16	Inoculated Cell Density as a Determinant Factor of the Growth Dynamics and Metastatic Efficiency of a Breast Cancer Murine Model. PLoS ONE, 2016, 11, e0165817.	2.5	31
17	Does Hypoxic Response Mediate Primary Resistance to Sunitinib in Untreated Locally Advanced Breast Cancer?. Current Cancer Drug Targets, 2016, 17, 62-73.	1.6	3
18	LDL-cholesterol signaling induces breast cancer proliferation and invasion. Lipids in Health and Disease, 2014, 13, 16.	3.0	111

#	Article	IF	CITATIONS
19	Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression. BMC Cancer, 2014, 14, 132.	2.6	103
20	Physical health outcomes in prisoners with intellectual disability: a crossâ€sectional study. Journal of Intellectual Disability Research, 2013, 57, 1191-1196.	2.0	25
21	miR-363-5p regulates endothelial cell properties and their communication with hematopoietic precursor cells. Journal of Hematology and Oncology, 2013, 6, 87.	17.0	22
22	Bone Marrow–Derived CD11b+Jagged2+ Cells Promote Epithelial-to-Mesenchymal Transition and Metastasization in Colorectal Cancer. Cancer Research, 2013, 73, 4233-4246.	0.9	22
23	Doxorubicin vs. ladirubicin: methods for improving osteosarcoma treatment. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1239-1249.	2.4	5
24	Endothelial progenitor cells and integrins: adhesive needs. Fibrogenesis and Tissue Repair, 2012, 5, 4.	3.4	109
25	Context- and Cell-Dependent Effects of Delta-Like 4 Targeting in the Bone Marrow Microenvironment. PLoS ONE, 2012, 7, e52450.	2.5	7
26	Gomes AL, Carvalho T, Serpa J, Torre C, Dias S. Hypercholesterolemia promotes bone marrow cell mobilization by perturbing the SDF-1:CXCR4 axis. Blood. 2010;115(19):3886–3894 Blood, 2011, 118, 5060-5063.	1.4	0
27	The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. Biomaterials, 2011, 32, 7096-7105.	11.4	67
28	Loss or Inhibition of Stromal-Derived PIGF Prolongs Survival of Mice with Imatinib-Resistant Bcr-Abl1+ Leukemia. Cancer Cell, 2011, 19, 740-753.	16.8	124
29	Metabolic cues from the microenvironment act as a major selective factor for cancer progression and metastases formation. Cell Cycle, 2011, 10, 180-181.	2.6	10
30	Cholesterol Regulates VEGFR-1 (FLT-1) Expression and Signaling in Acute Leukemia Cells. Molecular Cancer Research, 2011, 9, 215-224.	3.4	18
31	Bone Marrow-Derived Endothelial Progenitors Expressing Delta-Like 4 (Dll4) Regulate Tumor Angiogenesis. PLoS ONE, 2011, 6, e18323.	2.5	14
32	Hypercholesterolemia promotes bone marrow cell mobilization by perturbing the SDF-1:CXCR4 axis. Blood, 2010, 115, 3886-3894.	1.4	96
33	TNF-î \pm Regulates the Effects of Irradiation in the Mouse Bone Marrow Microenvironment. PLoS ONE, 2010, 5, e8980.	2.5	37
34	Butyrate-rich Colonic Microenvironment Is a Relevant Selection Factor for Metabolically Adapted Tumor Cells. Journal of Biological Chemistry, 2010, 285, 39211-39223.	3.4	66
35	VEGF Promotes Malaria-Associated Acute Lung Injury in Mice. PLoS Pathogens, 2010, 6, e1000916.	4.7	89
36	Endothelial Progenitor Cells: Hope Beyond Controversy. Current Cancer Drug Targets, 2010, 10, 914-921.	1.6	14

#	Article	IF	CITATIONS
37	Communication between bone marrow niches in normal bone marrow function and during hemopathies progression. Hematology Reports, 2009, 1, 14.	0.8	2
38	BCL-6 Oncoprotein in Breast Cancer: Loss of Expression in Disease Progression. Pathobiology, 2009, 76, 235-242.	3.8	14
39	MicroRNA expression profiling in bone marrow: Implications in hematological malignancies. Biotechnology Journal, 2009, 4, 88-97.	3.5	7
40	Microenvironment Changes (in pH) Affect VEGF Alternative Splicing. Cancer Microenvironment, 2008, 1, 131-139.	3.1	49
41	Detailed molecular characterization of cord blood–derived endothelial progenitors. Experimental Hematology, 2008, 36, 193.e1-193.e15.	0.4	33
42	VEGF signaling on hematopoietic precursors restricts B-lymphoid commitment in vitro and in vivo. Experimental Hematology, 2008, 36, 1329-1336.e3.	0.4	9
43	Chemo-angiogenic profile of bovine urinary bladder tumors distinguishes urothelial carcinomas from hemangiosarcomas. Veterinary Immunology and Immunopathology, 2008, 121, 344-358.	1.2	6
44	Endothelial Progenitors in Vascular Repair and Angiogenesis: How Many are Needed and What to do?. Cardiovascular & Hematological Disorders Drug Targets, 2008, 8, 185-192.	0.7	44
45	Endothelial progenitor cells are cellular hubs essential for neoangiogenesis of certain aggressive adenocarcinomas and metastatic transition but not adenomas. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, E54; author reply E55.	7.1	51
46	Notch Pathway Modulation on Bone Marrow-Derived Vascular Precursor Cells Regulates Their Angiogenic and Wound Healing Potential. PLoS ONE, 2008, 3, e3752.	2.5	37
47	Cholesterol Promotes Acute Leukemia Progression through Systemic but Selective Endothelial Cell Activation Blood, 2008, 112, 1887-1887.	1.4	0
48	Susceptibility towards Irradiation-Induced Bone Marrow (BM) Dysplasia in Vivo Is Determined by the BM Vasculogenic Phenotype: Correlation with MDS Patients BM Samples. Blood, 2008, 112, 3638-3638.	1.4	7
49	Cholesterol Rich-Domains Regulate VEGFR-1 (FLT-1) Expression and Signaling in Acute Leukemia Cells. Blood, 2008, 112, 5315-5315.	1.4	0
50	Autocrine VEGF loops, signaling pathways, and acute leukemia regulation. Leukemia and Lymphoma, 2007, 48, 481-488.	1.3	25
51	Characterization and clinical relevance of circulating and biopsy-derived endothelial progenitor cells in lymphoma patients. Haematologica, 2007, 92, 469-477.	3.5	61
52	VEGF/PLGF induces leukemia cell migration via P38/ERK1/2 kinase pathway, resulting in Rho GTPases activation and caveolae formation. Leukemia, 2007, 21, 1590-1594.	7.2	35
53	VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing. Experimental Cell Research, 2007, 313, 1561-1574.	2.6	119
54	VEGFR-1 (FLT-1) activation modulates acute lymphoblastic leukemia localization and survival within the bone marrow, determining the onset of extramedullary disease. Blood, 2006, 107, 1608-1616.	1.4	95

#	Article	IF	CITATIONS
55	Expression and function of the chemokine receptor CCR7 in thyroid carcinomas. Journal of Endocrinology, 2006, 191, 229-238.	2.6	56
56	Cytokine Preconditioning Promotes Codifferentiation of Human Fetal Liver CD133+Stem Cells Into Angiomyogenic Tissue. Circulation, 2005, 111, 1175-1183.	1.6	58
57	Expression of vascular endothelial growth factor (VEGF) and its receptors in thyroid carcinomas of follicular origin: a potential autocrine loop. European Journal of Endocrinology, 2005, 153, 701-709.	3.7	68
58	VEGF Regulates Leukemia Migration Via FLT-1, Involving Pi3 Kinase, RhoA and Rac1 Activation and Lipid Rafts Formation Blood, 2005, 106, 864-864.	1.4	1
59	Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nature Medicine, 2004, 10, 64-71.	30.7	697
60	Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood, 2004, 103, 3883-3889.	1.4	159
61	Kaposi's sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/ KDR. Cancer Cell, 2003, 3, 131-143.	16.8	221
62	Optimized culture conditions for the generation of dendritic cells from peripheral blood monocytes. Vox Sanguinis, 2003, 84, 228-236.	1.5	25
63	Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia, 2003, 17, 604-611.	7.2	161
64	Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Seminars in Cell and Developmental Biology, 2002, 13, 61-67.	5.0	135
65	VEGF165 promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood, 2002, 99, 2532-2540.	1.4	238
66	Recruitment of Stem and Progenitor Cells from the Bone Marrow Niche Requires MMP-9 Mediated Release of Kit-Ligand. Cell, 2002, 109, 625-637.	28.9	1,630
67	Vascular endothelial growth factor (VEGF)–C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood, 2002, 99, 2179-2184.	1.4	241
68	Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nature Medicine, 2002, 8, 841-849.	30.7	602
69	Clonal Variation in Phenotype and Life Span of Human Embryonic Fibroblasts (MRC-5) Transduced with the Catalytic Component of Telomerase (hTERT). Experimental Cell Research, 2001, 268, 14-25.	2.6	31
70	Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10857-10862.	7.1	254
71	The Role of CXC Chemokines in the Regulation of Tumor Angiogenesis. Cancer Investigation, 2001, 19, 732-738.	1.3	26
72	Impaired recruitment of bone-marrow–derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Medicine, 2001, 7, 1194-1201.	30.7	1,784

#	Article	IF	CITATIONS
73	Anagrelide metabolite induces thrombocytopenia in mice by inhibiting megakaryocyte maturation without inducing platelet aggregation. Experimental Hematology, 2001, 29, 1417-1424.	0.4	16
74	Vascular Endothelial Growth Factor and Angiopoietin-1 Stimulate Postnatal Hematopoiesis by Recruitment of Vasculogenic and Hematopoietic Stem Cells. Journal of Experimental Medicine, 2001, 193, 1005-1014.	8.5	646
75	Vascular Trauma Induces Rapid but Transient Mobilization of VEGFR2 ⁺ AC133 ⁺ Endothelial Precursor Cells. Circulation Research, 2001, 88, 167-174.	4.5	777
76	Infection of Endothelium With E1 â^' E4 + , but Not E1 â^' E4 â^' , Adenovirus Gene Transfer Vectors Enhances Leukocyte Adhesion and Migration by Modulation of ICAM-1, VCAM-1, CD34, and Chemokine Expression. Circulation Research, 2001, 88, 903-910.	4.5	32
77	Mobilization of Endothelial and Hematopoietic Stem and Progenitor Cells by Adenovectorâ€Mediated Elevation of Serum Levels of SDFâ€1, VEGF, and Angiopoietinâ€1. Annals of the New York Academy of Sciences, 2001, 938, 36-47.	3.8	251
78	Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. Journal of Clinical Investigation, 2000, 106, 511-521.	8.2	384
79	Stromal-derived factor 1–induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood, 2000, 96, 4152-4159.	1.4	152
80	Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood, 2000, 96, 1525-1530.	1.4	255
81	Exploiting changes in the tumour microenvironment with sequential cytokine and matrix metalloprotease inhibitor treatment in a murine breast cancer model. British Journal of Cancer, 2000, 83, 1538-1543.	6.4	15
82	Stromal-derived factor 1-induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood, 2000, 96, 4152-9.	1.4	40
83	Multiple molecular and cellular changes associated with tumour stasis and regression during IL-12 therapy of a murine breast cancer model. , 1998, 75, 151-157.		41
84	IL-12 regulates VEGF and MMPs in a murine breast cancer model. International Journal of Cancer, 1998, 78, 361-365.	5.1	115