
Neal M Alto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6033534/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	ADAP1 promotes latent HIV-1 reactivation by selectively tuning KRAS–ERK–AP-1 T cell signaling-transcriptional axis. Nature Communications, 2022, 13, 1109.	12.8	2
2	Toxins, mutations and adaptations. ELife, 2021, 10, .	6.0	0
3	Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell, 2021, 184, 3178-3191.e18.	28.9	99
4	Systematic reconstruction of an effector-gene network reveals determinants of Salmonella cellular and tissue tropism. Cell Host and Microbe, 2021, 29, 1531-1544.e9.	11.0	12
5	Overexpression screen of interferon-stimulated genes identifies RARRES3 as a restrictor of Toxoplasma gondii infection. ELife, 2021, 10, .	6.0	15
6	Accessible cholesterol is localized in bacterial plasma membrane protrusions. Journal of Lipid Research, 2020, 61, 1538.	4.2	5
7	Oxysterols provide innate immunity to bacterial infection by mobilizing cell surface accessible cholesterol. Nature Microbiology, 2020, 5, 929-942.	13.3	96
8	Dynamin regulates the dynamics and mechanical strength of the actin cytoskeleton as a multifilament actin-bundling protein. Nature Cell Biology, 2020, 22, 674-688.	10.3	70
9	Screening Mycobacterium tuberculosis Secreted Proteins Identifies Mpt64 as a Eukaryotic Membrane-Binding Bacterial Effector. MSphere, 2019, 4, .	2.9	30
10	A NIK–SIX signalling axis controls inflammation by targeted silencing of non-canonical NF-κB. Nature, 2019, 568, 249-253.	27.8	43
11	Cooperative Immune Suppression by Escherichia coli and Shigella Effector Proteins. Infection and Immunity, 2018, 86, .	2.2	17
12	A systematic exploration of the interactions between bacterial effector proteins and host cell membranes. Nature Communications, 2017, 8, 532.	12.8	64
13	How Bacteria Subvert Animal Cell Structure and Function. Annual Review of Cell and Developmental Biology, 2016, 32, 373-397.	9.4	33
14	Shigella flexneri suppresses NF-κB activation by inhibiting linear ubiquitin chain ligation. Nature Microbiology, 2016, 1, 16084.	13.3	72
15	Identification and Characterization of Novel Mycobacterium tuberculosis-Secreted Virulence Proteins. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
16	Cell-Based Screen Identifies Human Interferon-Stimulated Regulators of Listeria monocytogenes Infection. PLoS Pathogens, 2016, 12, e1006102.	4.7	26
17	STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host and Microbe, 2015, 18, 157-168.	11.0	424
18	Myristoylome Profiling Reveals a Concerted Mechanism of ARF GTPase Deacylation by the Bacterial Protease IpaJ. Molecular Cell, 2015, 58, 110-122.	9.7	72

Neal M Alto

#	Article	IF	CITATIONS
19	Bacteria Fighting Back: How Pathogens Target and Subvert the Host Innate Immune System. Molecular Cell, 2014, 54, 321-328.	9.7	190
20	Selective Protection of an ARF1-GTP Signaling Axis by a Bacterial Scaffold Induces Bidirectional Trafficking Arrest. Cell Reports, 2014, 6, 878-891.	6.4	31
21	Proteolytic elimination of N-myristoyl modifications by the Shigella virulence factor IpaJ. Nature, 2013, 496, 106-109.	27.8	139
22	Probing mechanisms of cell polarity and membrane trafficking using bacterial effector molecules FASEB Journal, 2013, 27, 326.1.	0.5	0
23	Subversion of Cell Signaling by Pathogens. Cold Spring Harbor Perspectives in Biology, 2012, 4, a006114.	5.5	101
24	Identification of F-actin as the Dynamic Hub in a Microbial-Induced GTPase Polarity Circuit. Cell, 2012, 148, 803-815.	28.9	33
25	Correlative Light and Electron Microscopy (CLEM) as a Tool to Visualize Microinjected Molecules and their Eukaryotic Sub-cellular Targets. Journal of Visualized Experiments, 2012, , e3650.	0.3	11
26	Express Your LOV: An Engineered Flavoprotein as a Reporter for Protein Expression and Purification. PLoS ONE, 2012, 7, e52962.	2.5	24
27	Mimicking GEFs: a common theme for bacterial pathogens. Cellular Microbiology, 2012, 14, 10-18.	2.1	38
28	The assembly of a GTPase–kinase signalling complex by a bacterial catalytic scaffold. Nature, 2011, 469, 107-111.	27.8	98
29	Activation of PAK by a bacterial type III effector EspG reveals alternative mechanisms of GTPase pathway regulation Small GTPases, 2011, 2, 217-221.	1.6	14
30	Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nature Structural and Molecular Biology, 2009, 16, 853-860.	8.2	133
31	Mimicking small G-proteins: an emerging theme from the bacterial virulence arsenal. Cellular Microbiology, 2008, 10, 566-575.	2.1	14
32	Analysis of Rhoâ€GTPase Mimicry by a Family of Bacterial Type III Effector Proteins. Methods in Enzymology, 2008, 439, 131-143.	1.0	8
33	Structure and Function of Salmonella SifA Indicate that Its Interactions with SKIP, SseJ, and RhoA Family GTPases Induce Endosomal Tubulation. Cell Host and Microbe, 2008, 4, 434-446.	11.0	159
34	The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. Journal of Cell Biology, 2007, 178, 1265-1278.	5.2	112
35	Identification of a Bacterial Type III Effector Family with G Protein Mimicry Functions. Cell, 2006, 124, 133-145.	28.9	246