
Chuan-Zao Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/60329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional redundancy of <i>OsPIN1</i> paralogous genes in regulating plant growth and development in rice. Plant Signaling and Behavior, 2022, 17, 2065432.	2.4	3
2	Progress on methods for acquiring flanking genomic sequence Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2022, 44, 313-321.	0.2	0
3	Cadmium Inhibits Lateral Root Emergence in Rice by Disrupting OsPIN-Mediated Auxin Distribution and the Protective Effect of OsHMA3. Plant and Cell Physiology, 2021, 62, 166-177.	3.1	21
4	OsbHLH6 interacts with OsSPX4 and regulates the phosphate starvation response in rice. Plant Journal, 2021, 105, 649-667.	5.7	23
5	OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. New Phytologist, 2021, 229, 935-949.	7.3	43
6	Rice NINâ€LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnology Journal, 2021, 19, 448-461.	8.3	72
7	Phosphate Uptake and Transport in Plants: An Elaborate Regulatory System. Plant and Cell Physiology, 2021, 62, 564-572.	3.1	49
8	<i>OsbHLH98</i> regulates leaf angle in rice through transcriptional repression of <i>OsBUL1</i> . New Phytologist, 2021, 230, 1953-1966.	7.3	14
9	Rootâ€secreted peptide OsPEP1 regulates primary root elongation in rice. Plant Journal, 2021, 107, 480-492.	5.7	7
10	Lateral roots but not root hairs contribute to high uptake of manganese and cadmium in rice. Journal of Experimental Botany, 2021, 72, 7219-7228.	4.8	9
11	VAP-RELATED SUPPRESSORS OF TOO MANY MOUTHS (VST) family proteins are regulators of root system architecture. Plant Physiology, 2021, 185, 457-468.	4.8	2
12	PROTEIN PHOSPHATASE95 Regulates Phosphate Homeostasis by Affecting Phosphate Transporter Trafficking in Rice. Plant Cell, 2020, 32, 740-757.	6.6	47
13	CASEIN KINASE2-Dependent Phosphorylation of PHOSPHATE2 Fine-tunes Phosphate Homeostasis in Rice. Plant Physiology, 2020, 183, 250-262.	4.8	22
14	The YDA-MKK4/MKK5-MPK3/MPK6 Cascade Functions Downstream of the RGF1-RGI Ligand–Receptor Pair in Regulating Mitotic Activity in Root Apical Meristem. Molecular Plant, 2020, 13, 1608-1623.	8.3	49
15	Functional Divergence of PIN1 Paralogous Genes in Rice. Plant and Cell Physiology, 2019, 60, 2720-2732.	3.1	53
16	SPX4 Acts on PHR1-Dependent and -Independent Regulation of Shoot Phosphorus Status in Arabidopsis. Plant Physiology, 2019, 181, 332-352.	4.8	54
17	CRD 1, an Xpo1 domain protein, regulates mi RNA accumulation and crown root development in rice. Plant Journal, 2019, 100, 328-342.	5.7	23
18	Molecular Mechanisms of Root Development in Rice. Rice, 2019, 12, 1.	4.0	170

CHUAN-ZAO MAO

#	Article	IF	CITATIONS
19	OsSPL3, an SBP-Domain Protein, Regulates Crown Root Development in Rice. Plant Cell, 2019, 31, 1257-1275.	6.6	95
20	Molecular control and genetic improvement of phosphorus use efficiency in rice. Molecular Breeding, 2019, 39, 1.	2.1	17
21	Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. New Phytologist, 2018, 219, 135-148.	7.3	97
22	LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. Journal of Experimental Botany, 2018, 69, 385-397.	4.8	70
23	Predicted Arabidopsis Interactome Resource and Gene Set Linkage Analysis: A Transcriptomic Analysis Resource. Plant Physiology, 2018, 177, 422-433.	4.8	11
24	Molecular mechanisms of phosphate transport and signaling in higher plants. Seminars in Cell and Developmental Biology, 2018, 74, 114-122.	5.0	122
25	A phosphate-starvation induced RING-type E3 ligase maintains phosphate homeostasis partially through OsSPX2 in rice. Plant and Cell Physiology, 2018, 59, 2564-2575.	3.1	14
26	OsFTIP7 determines auxin-mediated anther dehiscence in rice. Nature Plants, 2018, 4, 495-504.	9.3	63
27	OsFTIP1-Mediated Regulation of Florigen Transport in Rice Is Negatively Regulated by the Ubiquitin-Like Domain Kinase OsUbDKγ4. Plant Cell, 2017, 29, 491-507.	6.6	55
28	Two h-Type Thioredoxins Interact with the E2 Ubiquitin Conjugase PHO2 to Fine-Tune Phosphate Homeostasis in Rice. Plant Physiology, 2017, 173, 812-824.	4.8	46
29	Characterization of the rice NLA family reveals a key role for OsNLA1 in phosphate homeostasis. Rice, 2017, 10, 52.	4.0	19
30	Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation. Frontiers in Plant Science, 2017, 8, 1121.	3.6	75
31	OsCLT1, a CRTâ€like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. New Phytologist, 2016, 211, 658-670.	7.3	75
32	The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. Journal of Experimental Botany, 2016, 67, 6051-6059.	4.8	158
33	GIPS: A Software Guide to Sequencing-Based Direct Gene Cloning in Forward Genetics Studies. Plant Physiology, 2016, 170, 1929-1934.	4.8	18
34	LIGHT-INDUCED RICE1 Regulates Light-Dependent Attachment of LEAF-TYPE FERREDOXIN-NADP ⁺ OXIDOREDUCTASE to the Thylakoid Membrane in Rice and Arabidopsis. Plant Cell, 2016, 28, 712-728.	6.6	23
35	Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Plant Physiology, 2015, 168, 1762-1776.	4.8	152
36	Genetic manipulation of a high-affinity PHR1 target cis-element to improve phosphorous uptake in Oryza sativa L Plant Molecular Biology, 2015, 87, 429-440.	3.9	53

CHUAN-ZAO MAO

#	Article	IF	CITATIONS
37	SPX proteins regulate Pi homeostasis and signaling in different subcellular level. Plant Signaling and Behavior, 2015, 10, e1061163.	2.4	39
38	SPX4 Negatively Regulates Phosphate Signaling and Homeostasis through Its Interaction with PHR2 in Rice Â. Plant Cell, 2014, 26, 1586-1597.	6.6	256
39	Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14953-14958.	7.1	335
40	<i>Os<scp>ORC</scp>3</i> is required for lateral root development in rice. Plant Journal, 2013, 74, 339-350.	5.7	45
41	Interactions among rice ORC subunits. Plant Signaling and Behavior, 2013, 8, e25007.	2.4	3
42	A Gain-of-Function Mutation in OsIAA11 Affects Lateral Root Development in Rice. Molecular Plant, 2012, 5, 154-161.	8.3	114
43	Molecular cloning and characterization of OsCHR4, a rice chromatin-remodeling factor required for early chloroplast development in adaxial mesophyll. Planta, 2012, 236, 1165-1176.	3.2	46
44	The Predicted <i>Arabidopsis</i> Interactome Resource and Network Topology-Based Systems Biology Analyses Â. Plant Cell, 2011, 23, 911-922.	6.6	49
45	Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in <i>Oryza sativa</i> . New Phytologist, 2011, 189, 843-855.	7.3	36
46	OsCAND1 Is Required for Crown Root Emergence in Rice. Molecular Plant, 2011, 4, 289-299.	8.3	75
47	OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta, 2008, 228, 51-59.	3.2	96
48	Overexpression of a NACâ€domain protein promotes shoot branching in rice. New Phytologist, 2007, 176, 288-298.	7.3	93
49	OsEIL1, a Rice Homolog of the Arabidopsis EIN3 Regulates the Ethylene Response as a Positive Component. Plant Molecular Biology, 2006, 61, 141-152.	3.9	106
50	Comparative mapping of QTLs for Al tolerance in rice and identification of positional Al-induced genes. Journal of Zhejiang University Science B, 2004, 5, 634-43.	0.4	11
51	Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. Journal of Experimental Botany, 2003, 55, 137-143.	4.8	80