
Anu Koivula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6032631/publications.pdf Version: 2024-02-01

ΔΝΗΚΟΙΝΗΛ

#	Article	IF	CITATIONS
1	Threeâ€dimensional structure of xylonolactonase from <i>Caulobacter crescentus</i> : A mononuclear iron enzyme of the 6â€bladed βâ€propeller hydrolase family. Protein Science, 2022, 31, 371-383.	7.6	4
2	Inhibitory effect of lignin on the hydrolysis of xylan by thermophilic and thermolabile GH11 xylanases. , 2022, 15, 49.		4
3	Oxidative modification of cellulosic fibres by lytic polysaccharide monooxygenase AA9A from Trichoderma reesei. Cellulose, 2022, 29, 6021-6038.	4.9	7
4	Effect of oxidation on cellulose and water structure: a molecular dynamics simulation study. Cellulose, 2021, 28, 3917-3933.	4.9	16
5	Role of Tryptophan 38 in Loading Substrate Chain into the Active-site Tunnel of Cellobiohydrolase I from <i>Trichoderma reesei</i> . Journal of Applied Glycoscience (1999), 2021, 68, 19-29.	0.7	2
6	Current state of and need for enzyme engineering of 2-deoxy-D-ribose 5-phosphate aldolases and its impact. Applied Microbiology and Biotechnology, 2021, 105, 6215-6228.	3.6	7
7	Xylonolactonase from <i>Caulobacter crescentus</i> Is a Mononuclear Nonheme Iron Hydrolase. Biochemistry, 2021, 60, 3046-3049.	2.5	4
8	Substrate specificity of 2-deoxy-D-ribose 5-phosphate aldolase (DERA) assessed by different protein engineering and machine learning methods. Applied Microbiology and Biotechnology, 2020, 104, 10515-10529.	3.6	21
9	In vitro reconstitution and characterisation of the oxidative d-xylose pathway for production of organic acids and alcohols. AMB Express, 2019, 9, 48.	3.0	15
10	Cloning of novel bacterial xylanases from lignocellulose-enriched compost metagenomic libraries. AMB Express, 2019, 9, 124.	3.0	18
11	Bioconjugation with Aminoalkylhydrazine for Efficient Mass Spectrometry-Based Detection of Small Carbonyl Compounds. ACS Omega, 2019, 4, 13447-13453.	3.5	6
12	The crystal structure of D-xylonate dehydratase reveals functional features of enzymes from the Ilv/ED dehydratase family. Scientific Reports, 2018, 8, 865.	3.3	21
13	A Clucose/Oxygen Enzymatic Fuel Cell based on Gold Nanoparticles modified Graphene Screen-Printed Electrode. Proof-of-Concept in Human Saliva. Sensors and Actuators B: Chemical, 2018, 256, 921-930.	7.8	72
14	The Crystal Structure of a Bacterial l-Arabinonate Dehydratase Contains a [2Fe-2S] Cluster. ACS Chemical Biology, 2017, 12, 1919-1927.	3.4	25
15	Characterization and mutagenesis of two novel iron–sulphur cluster pentonate dehydratases. Applied Microbiology and Biotechnology, 2016, 100, 7549-7563.	3.6	27
16	Expression of Two Novel Î ² -Glucosidases from Chaetomium atrobrunneum in Trichoderma reesei and Characterization of the Heterologous Protein Products. Molecular Biotechnology, 2016, 58, 821-831.	2.4	24
17	Crystallization and X-ray diffraction analysis of an <scp>L</scp> -arabinonate dehydratase from <i>Rhizobium leguminosarum</i> bv. <i>trifolii</i> and a <scp>D</scp> -xylonate dehydratase from <i>Caulobacter crescentus</i> . Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 604-608.	0.8	3
18	Characterization of a unique Caulobacter crescentus aldose-aldose oxidoreductase having dual activities. Applied Microbiology and Biotechnology, 2016, 100, 673-685.	3.6	4

#	Article	IF	CITATIONS
19	Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals. Critical Reviews in Biotechnology, 2016, 36, 904-916.	9.0	84
20	Structure and function of <i>Caulobacter crescentus</i> aldose–aldose oxidoreductase. Biochemical Journal, 2015, 472, 297-307.	3.7	10
21	A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2015, 99, 9439-9447.	3.6	17
22	Structure and Function of a Decarboxylating <i>Agrobacterium tumefaciens</i> Keto-deoxy- <scp>d</scp> -galactarate Dehydratase. Biochemistry, 2014, 53, 8052-8060.	2.5	9
23	Purification, crystallization and preliminary X-ray diffraction analysis of a novel keto-deoxy-D-galactarate (KDG) dehydratase fromAgrobacterium tumefaciens. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 49-52.	0.8	4
24	l-Arabinose/d-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of l-arabinose to l-arabonate with Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2014, 98, 9653-9665.	3.6	15
25	Single-molecule Imaging Analysis of Elementary Reaction Steps of Trichoderma reesei Cellobiohydrolase I (Cel7A) Hydrolyzing Crystalline Cellulose Iα and IIII. Journal of Biological Chemistry, 2014, 289, 14056-14065.	3.4	50
26	Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2014, 98, 2991-3001.	3.6	35
27	Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Bioresource Technology, 2013, 146, 118-125.	9.6	46
28	The Tryptophan Residue at the Active Site Tunnel Entrance of Trichoderma reesei Cellobiohydrolase Cel7A Is Important for Initiation of Degradation of Crystalline Cellulose. Journal of Biological Chemistry, 2013, 288, 13503-13510.	3.4	77
29	Characterization of a novel Agrobacterium tumefaciens Galactarolactone Cycloisomerase Enzyme for Direct Conversion of d-Galactarolactone to 3-Deoxy-2-keto-l-threo-hexarate. Journal of Biological Chemistry, 2012, 287, 17662-17671.	3.4	28
30	Metabolic engineering of Saccharomyces cerevisiae for bioconversion of d-xylose to d-xylonate. Metabolic Engineering, 2012, 14, 427-436.	7.0	74
31	Visualization of Cellobiohydrolase I from Trichoderma reesei Moving on Crystalline Cellulose Using High-Speed Atomic Force Microscopy. Methods in Enzymology, 2012, 510, 169-182.	1.0	24
32	Lignocellulosic ethanol: From science to industry. Biomass and Bioenergy, 2012, 46, 13-24.	5.7	213
33	Engineering chitinases for the synthesis of chitin oligosaccharides: Catalytic amino acid mutations convert the GH-18 family glycoside hydrolases into transglycosylases. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 89-96.	1.8	46
34	Polysaccharide-Acting Enzymes and Their Applications. , 2012, , 375-392.		1
35	High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnology for Biofuels, 2011, 4, 30.	6.2	140
36	Traffic Jams Reduce Hydrolytic Efficiency of Cellulase on Cellulose Surface. Science, 2011, 333, 1279-1282.	12.6	501

#	Article	IF	CITATIONS
37	Crystal structure of an ascomycete fungal laccase from <i>Thielavia arenaria</i> – common structural features of asco″accases. FEBS Journal, 2011, 278, 2283-2295.	4.7	71
38	Crystal Structure of Uronate Dehydrogenase from Agrobacterium tumefaciens. Journal of Biological Chemistry, 2011, 286, 27294-27300.	3.4	25
39	Identification in Agrobacterium tumefaciens of the d-galacturonic acid dehydrogenase gene. Applied Microbiology and Biotechnology, 2010, 86, 901-909.	3.6	42
40	Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 899-908.	2.3	101
41	Electrochemical evaluation of electron transfer kinetics of high and low redox potential laccases on gold electrode surface. Electrochimica Acta, 2010, 56, 817-827.	5.2	41
42	Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Engineering, Design and Selection, 2010, 23, 69-79.	2.1	118
43	High Speed Atomic Force Microscopy Visualizes Processive Movement of Trichoderma reesei Cellobiohydrolase I on Crystalline Cellulose. Journal of Biological Chemistry, 2009, 284, 36186-36190.	3.4	259
44	Characterization of the wheat germ agglutinin binding to self-assembled monolayers of neoglycoconjugates by AFM and SPR. Glycobiology, 2009, 19, 633-643.	2.5	24
45	Performance of a Printable Enzymatic Fuel Cell: Study on Mediated ThL Laccase Cathode. ECS Transactions, 2009, 25, 1-10.	0.5	5
46	Toward understanding of carbohydrate binding and substrate specificity of a glycosyl hydrolase 18 family (GH-18) chitinase from Trichoderma harzianum. Glycobiology, 2009, 19, 1116-1126.	2.5	33
47	Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B. Applied Microbiology and Biotechnology, 2009, 83, 261-272.	3.6	61
48	Essential role of the Câ€ŧerminus in <i>Melanocarpus albomyces</i> laccase for enzyme production, catalytic properties and structure. FEBS Journal, 2009, 276, 6285-6300.	4.7	73
49	Structure–Function Studies of a Melanocarpus albomyces Laccase Suggest a Pathway for Oxidation of Phenolic Compounds. Journal of Molecular Biology, 2009, 392, 895-909.	4.2	99
50	Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnology and Bioengineering, 2008, 101, 515-528.	3.3	115
51	Development of a printable laccase-based biocathode for fuel cell applications. Enzyme and Microbial Technology, 2008, 43, 93-102.	3.2	68
52	Crystal structures of <i>Melanocarpus albomyces</i> cellobiohydrolase Cel7B in complex with celloâ€oligomers show high flexibility in the substrate binding. Protein Science, 2008, 17, 1383-1394.	7.6	49
53	Heterologous expression and site-directed mutagenesis studies of two Trichoderma harzianum chitinases, Chit33 and Chit42, in Escherichia coli. Protein Expression and Purification, 2007, 51, 216-226.	1.3	21
54	Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability. Enzyme and Microbial Technology, 2007, 41, 234-243.	3.2	41

#	Article	IF	CITATIONS
55	Preliminary X-ray analysis of cellobiohydrolase Cel7B from <i>Melanocarpus albomyces</i> . Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 754-757.	0.7	5
56	Mutation of fungal endoglucanases into glycosynthases and characterization of their acceptor substrate specificity. Journal of Molecular Catalysis B: Enzymatic, 2007, 44, 106-116.	1.8	5
57	A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Biochemical and Biophysical Research Communications, 2006, 350, 929-934.	2.1	49
58	Crystal Structures of an Enantioselective Fab-fragment in Free and Complex Forms. Journal of Molecular Biology, 2006, 357, 471-480.	4.2	17
59	Development of a High-Throughput Format for Solid-Phase Extraction of Enantiomers Using an Immunosorbent in 384-Well Plates. Analytical Chemistry, 2005, 77, 3038-3044.	6.5	9
60	Differential recognition of animal type Â4-galactosylated and Â3-fucosylated chito-oligosaccharides by two family 18 chitinases from Trichoderma harzianum. Glycobiology, 2004, 14, 1303-1313.	2.5	26
61	The relationship between thermal stability and pH optimum studied with wild-type and mutant Trichoderma reesei cellobiohydrolase Cel7A. FEBS Journal, 2003, 270, 841-848.	0.2	60
62	Probing pH-Dependent Functional Elements in Proteins:Â Modification of Carboxylic Acid Pairs inTrichoderma reeseiCellobiohydrolase Cel6Aâ€. Biochemistry, 2003, 42, 10095-10103.	2.5	40
63	Engineering the Exo-loop of Trichoderma reesei Cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. Journal of Molecular Biology, 2003, 333, 817-829.	4.2	152
64	The Active Site of Cellobiohydrolase Cel6A fromTrichoderma reesei:Â The Roles of Aspartic Acids D221 and D175. Journal of the American Chemical Society, 2002, 124, 10015-10024.	13.7	133
65	Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nature Structural Biology, 2002, 9, 601-5.	9.7	151
66	Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant. Biochemical Journal, 2001, 356, 19-30.	3.7	59
67	Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant. Biochemical Journal, 2001, 356, 19.	3.7	29
68	Hydrolyses of α- and β-cellobiosyl fluorides by Cel6A (cellobiohydrolase II) of Trichoderma reesei and Humicola insolens. Biochemical Journal, 2000, 345, 315-319.	3.7	17
69	Hydrolyses of α- and β-cellobiosyl fluorides by Cel6A (cellobiohydrolase II) of Trichoderma reesei and Humicola insolens. Biochemical Journal, 2000, 345, 315.	3.7	8
70	Characterization ofTrichoderma reesei cellobiohydrolase Cel7A secreted fromPichia pastoris using two different promoters. Biotechnology and Bioengineering, 2000, 69, 486-494.	3.3	123
71	Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from Trichoderma reesei. Structure, 1999, 7, 1035-1045.	3.3	164
72	A comparative study of two retaining enzymes ofTrichoderma reesei: transglycosylation of oligosaccharides catalysed by the cellobiohydrolase I, Cel7A, and the β-mannanase, Man5A. FEBS Letters, 1999, 443, 149-153.	2.8	38

#	Article	IF	CITATIONS
73	Tryptophan 272: an essential determinant of crystalline cellulose degradation byTrichoderma reeseicellobiohydrolase Cel6A. FEBS Letters, 1998, 429, 341-346.	2.8	115
74	The catalytic amino-acid residues in the active site of cellobiohydrolase 1 are involved in chiral recognition. Journal of Biotechnology, 1997, 57, 115-125.	3.8	25
75	Activity Studies and Crystal Structures of Catalytically Deficient Mutants of Cellobiohydrolase I fromTrichoderma reesei. Journal of Molecular Biology, 1996, 264, 337-349.	4.2	162
76	Immunoaffinity Chromatographic Purification of Cellobiohydrolase II Mutants from RecombinantTrichoderma reeseiStrains Devoid of Major Endoglucanase Genes. Protein Expression and Purification, 1996, 8, 391-400.	1.3	16
77	Cello-Oligosaccharide Hydrolysis by Cellobiohydrolase II from Trichoderma Reesei. Association and Rate Constants Derived from an Analysis of Progress Curves. FEBS Journal, 1996, 240, 584-591.	0.2	58
78	The active site of Trichoderma reesei cellobiohydrolase II: the role of tyrosine 169. Protein Engineering, Design and Selection, 1996, 9, 691-699.	2.1	75
79	Modes of action of two Trichoderma reesei cellobiohydrolases. Progress in Biotechnology, 1995, 10, 211-224.	0.2	7
80	Progress-Curve Analysis Shows that Glucose Inhibits the Cellotriose Hydrolysis Catalysed by Cellobiohydrolase II from Trichoderma Reesei. FEBS Journal, 1995, 231, 250-258.	0.2	3
81	Progress-Curve Analysis Shows that Glucose Inhibits the Cellotriose Hydrolysis Catalysed by Cellobiohydrolase II from Trichoderma Reesei. FEBS Journal, 1995, 231, 250-258.	0.2	19
82	Random mutagenesis used to probe the structure and function of Bacillus stearothermophilus alpha-amylase. Protein Engineering, Design and Selection, 1990, 3, 181-191.	2.1	79
83	A new method for random mutagenesis of complete genes: enzymatic generation of mutant libraries in vitro. Protein Engineering, Design and Selection, 1988, 2, 63-68.	2.1	39