Emmanuel Skordalakes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6032506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16531-16536.	7.1	483
2	Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature, 2008, 455, 633-637.	27.8	248
3	Structure of the Rho Transcription Terminator. Cell, 2003, 114, 135-146.	28.9	234
4	Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nature Structural and Molecular Biology, 2010, 17, 513-518.	8.2	182
5	Structure and Function of the Conserved Core of Histone Deposition Protein Asf1. Current Biology, 2003, 13, 2148-2158.	3.9	137
6	Binding of the sphingolipid S1P to hTERT stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation. Science Signaling, 2015, 8, ra58.	3.6	114
7	ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay. Nature Structural and Molecular Biology, 2017, 24, 534-543.	8.2	112
8	Structural Insights into RNA-Dependent Ring Closure and ATPase Activation by the Rho Termination Factor. Cell, 2006, 127, 553-564.	28.9	111
9	Disease mutations in Rab7 result in unregulated nucleotide exchange and inappropriate activation. Human Molecular Genetics, 2010, 19, 1033-1047.	2.9	99
10	Function and Structure of a Prokaryotic Formylglycine-generating Enzyme. Journal of Biological Chemistry, 2008, 283, 20117-20125.	3.4	97
11	Structure and function of the telomeric CST complex. Computational and Structural Biotechnology Journal, 2016, 14, 161-167.	4.1	91
12	Structure of the RNA-Binding Domain of Telomerase: Implications for RNA Recognition and Binding. Structure, 2007, 15, 1403-1412.	3.3	84
13	Structural and functional analysis of the human POT1-TPP1 telomeric complex. Nature Communications, 2017, 8, 14928.	12.8	84
14	Structural Basis of Telomerase Inhibition by the Highly Specific BIBR1532. Structure, 2015, 23, 1934-1942.	3.3	83
15	Structure of the Human Telomeric Stn1-Ten1 Capping Complex. PLoS ONE, 2013, 8, e66756.	2.5	71
16	Telomerase structure function. Current Opinion in Structural Biology, 2011, 21, 92-100.	5.7	65
17	Structural Mechanism of Inhibition of the Rho Transcription Termination Factor by the Antibiotic Bicyclomycin. Structure, 2005, 13, 99-109.	3.3	61
18	Asf1-like structure of the conserved Yaf9 YEATS domain and role in H2A.Z deposition and acetylation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21573-21578.	7.1	56

2

#	Article	IF	CITATIONS
19	SPOP E3ÂUbiquitin Ligase Adaptor Promotes Cellular Senescence by Degrading the SENP7 deSUMOylase. Cell Reports, 2015, 13, 1183-1193.	6.4	55
20	Characterization of a Class of Peptide Boronates with Neutral P1 Side Chains as Highly Selective Inhibitors of Thrombin. Journal of Medicinal Chemistry, 1995, 38, 1511-1522.	6.4	45
21	Targeting ACSS2 with a Transition-State Mimetic Inhibits Triple-Negative Breast Cancer Growth. Cancer Research, 2021, 81, 1252-1264.	0.9	44
22	Inhibition of human α-thrombin by a phosphonate tripeptide proceeds via a metastable pentacoordinated phosphorus intermediate 1 1Edited by R. Huber. Journal of Molecular Biology, 2001, 311, 549-555.	4.2	41
23	Interaction between TBP and Condensin Drives the Organization and Faithful Segregation of Mitotic Chromosomes. Molecular Cell, 2015, 59, 755-767.	9.7	41
24	Comparison of Proteolytic Susceptibility in Phosphoglycerate Kinases from Yeast and E. coli: Modulation of Conformational Ensembles Without Altering Structure or Stability. Journal of Molecular Biology, 2007, 368, 1438-1447.	4.2	36
25	A Motif in the Vertebrate Telomerase N-Terminal Linker of TERT Contributes to RNA Binding and Telomerase Activity and Processivity. Structure, 2013, 21, 1870-1878.	3.3	34
26	MFF Regulation of Mitochondrial Cell Death Is a Therapeutic Target in Cancer. Cancer Research, 2019, 79, 6215-6226.	0.9	34
27	POT1-TPP1 telomere length regulation and disease. Computational and Structural Biotechnology Journal, 2020, 18, 1939-1946.	4.1	34
28	Cdc13 N-Terminal Dimerization, DNA Binding, and Telomere Length Regulation. Molecular and Cellular Biology, 2010, 30, 5325-5334.	2.3	33
29	Cdc13 OB2 Dimerization Required for Productive Stn1 Binding and Efficient Telomere Maintenance. Structure, 2013, 21, 109-120.	3.3	29
30	LIMD2 Is a Small LIM-Only Protein Overexpressed in Metastatic Lesions That Regulates Cell Motility and Tumor Progression by Directly Binding to and Activating the Integrin-Linked Kinase. Cancer Research, 2014, 74, 1390-1403.	0.9	28
31	Structural Analysis Reveals the Deleterious Effects of Telomerase Mutations in Bone Marrow Failure Syndromes. Journal of Biological Chemistry, 2017, 292, 4593-4601.	3.4	27
32	Neural and Synaptic Defects in slytherin, a Zebrafish Model for Human Congenital Disorders of Glycosylation. PLoS ONE, 2010, 5, e13743.	2.5	26
33	Rhodium(I)-catalysed hydroboration of 1-halo-1-alkenes. Tetrahedron Letters, 1994, 35, 2435-2436.	1.4	25
34	Structural and functional analysis of an OB-fold in human Ctc1 implicated in telomere maintenance and bone marrow syndromes. Nucleic Acids Research, 2018, 46, 972-984.	14.5	22
35	Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Review of Anticancer Therapy, 2019, 19, 569-587.	2.4	21
36	Design of a novel class of bifunctional thrombin inhibitors, synthesised by the first application of peptide boronates in solid phase chemistry. Tetrahedron Letters, 1997, 38, 3305-3308.	1.4	20

#	Article	IF	CITATIONS
37	Bifunctional Peptide Boronate Inhibitors of Thrombin:Â Crystallographic Analysis of Inhibition Enhanced by Linkage to an Exosite 1 Binding Peptide. Biochemistry, 1998, 37, 14420-14427.	2.5	18
38	Disruption of ATRX-RNA interactions uncovers roles in ATRX localization and PRC2 function. Nature Communications, 2020, 11, 2219.	12.8	18
39	Telomere dysfunction implicates POT1 in patients with idiopathic pulmonary fibrosis. Journal of Experimental Medicine, 2022, 219, .	8.5	17
40	Crystallographic Structures of Human α-Thrombin Complexed to Peptide Boronic Acids Lacking a Positive Charge at P1. Evidence of Novel Interactions. Journal of the American Chemical Society, 1997, 119, 9935-9936.	13.7	15
41	Single Cell Analysis of RNA-mediated Histone H3.3 Recruitment to a Cytomegalovirus Promoter-regulated Transcription Site. Journal of Biological Chemistry, 2013, 288, 19882-19899.	3.4	15
42	A non-natural nucleotide uses a specific pocket to selectively inhibit telomerase activity. PLoS Biology, 2019, 17, e3000204.	5.6	15
43	The facile synthesis of O,O-Dialkyl α-halobenzylphosphonates from O,O-Dialkyl α-hydroxybenzylphosphonates. Tetrahedron, 1996, 52, 10215-10224.	1.9	14
44	Pol α-primase dependent nuclear localization of the mammalian CST complex. Communications Biology, 2021, 4, 349.	4.4	14
45	The Telomere Binding Protein Cdc13 and the Single-Stranded DNA Binding Protein RPA Protect Telomeric DNA from Resection by Exonucleases. Journal of Molecular Biology, 2015, 427, 3023-3030.	4.2	13
46	Endogenous Cyclin D1 Promotes the Rate of Onset and Magnitude of Mitogenic Signaling via Akt1 Ser473 Phosphorylation. Cell Reports, 2020, 32, 108151.	6.4	9
47	Insights into Cdc13 dependent telomere length regulation. Aging, 2010, 2, 731-734.	3.1	9
48	POT1-TPP1 binding stabilizes POT1, promoting efficient telomere maintenance. Computational and Structural Biotechnology Journal, 2022, 20, 675-684.	4.1	9
49	Telomerase and the benefits of healthy living. Lancet Oncology, The, 2008, 9, 1023-1024.	10.7	4
50	Telomerase structure paves the way for new cancer therapies. Future Oncology, 2009, 5, 163-167.	2.4	4
51	In vitro Reconstitution of the Active T. castaneum Telomerase. Journal of Visualized Experiments, 2011, , e2799.	0.3	3
52	Crystallographic Studies of Telomerase. Methods in Enzymology, 2016, 573, 403-419.	1.0	3
53	X-Ray Crystallographic Analyses of Human α-Thrombin Complexed to Peptidyl Aminophosphonates: Evidence of a Binding Mechanism. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 545-548.	1.6	2