
Michael S Beauchamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6032360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Group Bridge for Simultaneous Regression and Support Estimation. Biometrics, 2023, 79, 1226-1238.	1.4	2
2	Intelligibility of audiovisual sentences drives multivoxel response patterns in human superior temporal cortex. NeuroImage, 2022, 247, 118796.	4.2	3
3	Ethical commitments, principles, and practices guiding intracranial neuroscientific research in humans. Neuron, 2022, 110, 188-194.	8.1	29
4	Biased Orientation and Color Tuning of the Human Visual Gamma Rhythm. Journal of Neuroscience, 2022, 42, 1054-1067.	3.6	3
5	Face and voice perception: Monkey see, monkey hear. Current Biology, 2021, 31, R435-R437.	3.9	0
6	Multi-electrode stimulation evokes consistent spatial patterns of phosphenes and improves phosphene mapping in blind subjects. Brain Stimulation, 2021, 14, 1356-1372.	1.6	20
7	Raising the stakes for cortical visual prostheses. Journal of Clinical Investigation, 2021, 131, .	8.2	1
8	Ipsilesional perceptual deficits in hemispatial neglect: Case reports. Cortex, 2020, 122, 277-287.	2.4	2
9	Electrocorticography reveals continuous auditory and visual speech tracking in temporal and occipital cortex. European Journal of Neuroscience, 2020, 51, 1364-1376.	2.6	19
10	Face viewing behavior predicts multisensory gain during speech perception. Psychonomic Bulletin and Review, 2020, 27, 70-77.	2.8	12
11	Crossmodal Phase Reset and Evoked Responses Provide Complementary Mechanisms for the Influence of Visual Speech in Auditory Cortex. Journal of Neuroscience, 2020, 40, 8530-8542.	3.6	33
12	RAVE: Comprehensive open-source software for reproducible analysis and visualization of intracranial EEG data. NeuroImage, 2020, 223, 117341.	4.2	15
13	Stimulating the brain to restore vision. Science, 2020, 370, 1168-1169.	12.6	4
14	Responses to Visual Speech in Human Posterior Superior Temporal Gyrus Examined with iEEG Deconvolution. Journal of Neuroscience, 2020, 40, 6938-6948.	3.6	11
15	Weak observer–level correlation and strong stimulus-level correlation between the McGurk effect and audiovisual speech-in-noise: A causal inference explanation. Cortex, 2020, 133, 371-383.	2.4	18
16	Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans. Cell, 2020, 181, 774-783.e5.	28.9	137
17	A relationship between Autism-Spectrum Quotient and face viewing behavior in 98 participants. PLoS ONE, 2020, 15, e0230866.	2.5	5
18	A relationship between Autism-Spectrum Quotient and face viewing behavior in 98 participants. , 2020,		0

¹⁸ 15, e0230866.

#	Article	IF	CITATIONS
19	A relationship between Autism-Spectrum Quotient and face viewing behavior in 98 participants. , 2020, 15, e0230866.		0
20	A relationship between Autism-Spectrum Quotient and face viewing behavior in 98 participants. , 2020, 15, e0230866.		0
21	A relationship between Autism-Spectrum Quotient and face viewing behavior in 98 participants. , 2020, 15, e0230866.		0
22	A relationship between Autism-Spectrum Quotient and face viewing behavior in 98 participants. , 2020, 15, e0230866.		0
23	A relationship between Autism-Spectrum Quotient and face viewing behavior in 98 participants. , 2020, 15, e0230866.		0
24	A Laboratory Study of the McGurk Effect in 324 Monozygotic and Dizygotic Twins. Frontiers in Neuroscience, 2019, 13, 1029.	2.8	6
25	Device Removal Following Brain Implant Research. Neuron, 2019, 103, 759-761.	8.1	20
26	Functionally Distinct Gamma Range Activity Revealed by Stimulus Tuning in Human Visual Cortex. Current Biology, 2019, 29, 3345-3358.e7.	3.9	68
27	Diminished single-stimulus response in vmPFC to favorite people in children diagnosed with Autism Spectrum Disorder. Biological Psychology, 2019, 145, 174-184.	2.2	14
28	Using Multisensory Integration to Understand the Human Auditory Cortex. Springer Handbook of Auditory Research, 2019, , 161-176.	0.7	2
29	Using principal component analysis to characterize eye movement fixation patterns during face viewing. Journal of Vision, 2019, 19, 2.	0.3	7
30	The visual speech head start improves perception and reduces superior temporal cortex responses to auditory speech. ELife, 2019, 8, .	6.0	36
31	Dissociable properties of gamma range activity in human early visual cortex when viewing gratings and natural images. Journal of Vision, 2019, 19, 36b.	0.3	0
32	Continued access to investigational brain implants. Nature Reviews Neuroscience, 2018, 19, 317-318.	10.2	38
33	Reducing Playback Rate of Audiovisual Speech Leads toÂaÂSurprising Decrease in the McGurk Effect. Multisensory Research, 2018, 31, 19-38.	1.1	8
34	Introduction to the Special Issue: Forty Years of the McGurk Effect. Multisensory Research, 2018, 31, 1-6.	1.1	7
35	206 Dynamic Stimulation of Human Visual Cortex Produces Useful Percepts of Visual Forms in Sighted and Blind Subjects. Neurosurgery, 2018, 65, 117.	1.1	1
36	A causal inference explanation for enhancement of multisensory integration by co-articulation. Scientific Reports, 2018, 8, 18032.	3.3	22

#	Article	IF	CITATIONS
37	Published estimates of group differences in multisensory integration are inflated. PLoS ONE, 2018, 13, e0202908.	2.5	19
38	Frontal cortex selects representations of the talker's mouth to aid in speech perception. ELife, 2018, 7,	6.0	26
39	Converging Evidence From Electrocorticography and BOLD fMRI for a Sharp Functional Boundary in Superior Temporal Gyrus Related to Multisensory Speech Processing. Frontiers in Human Neuroscience, 2018, 12, 141.	2.0	22
40	Free viewing of talking faces reveals mouth and eye preferring regions of the human superior temporal sulcus. NeuroImage, 2018, 183, 25-36.	4.2	15
41	A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography. Journal of Cognitive Neuroscience, 2017, 29, 1044-1060.	2.3	43
42	Mouth and Voice: A Relationship between Visual and Auditory Preference in the Human Superior Temporal Sulcus. Journal of Neuroscience, 2017, 37, 2697-2708.	3.6	35
43	Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics. Annual Review of Vision Science, 2017, 3, 141-166.	4.4	68
44	Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex. Journal of Neuroscience, 2017, 37, 7188-7197.	3.6	54
45	A Causal Inference Model Explains Perception of the McGurk Effect and Other Incongruent Audiovisual Speech. PLoS Computational Biology, 2017, 13, e1005229.	3.2	68
46	Audiovisual Speech Integration. , 2016, , 515-526.		12
47	Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation. Ear and Hearing, 2016, 37, e160-e172.	2.1	58
48	Single-Stimulus Functional MRI Produces a Neural Individual Difference Measure for Autism Spectrum Disorder. Clinical Psychological Science, 2015, 3, 422-432.	4.0	12
49	The noisy encoding of disparity model of the McGurk effect. Psychonomic Bulletin and Review, 2015, 22, 701-709.	2.8	45
50	The social mysteries of the superior temporal sulcus. Trends in Cognitive Sciences, 2015, 19, 489-490.	7.8	72
51	Re-examining overlap between tactile and visual motion responses within hMT + and STS. NeuroImage, 2015, 119, 187-196.	4.2	31
52	A link between individual differences in multisensory speech perception and eye movements. Attention, Perception, and Psychophysics, 2015, 77, 1333-1341.	1.3	56
53	Variability and stability in the McGurk effect: contributions of participants, stimuli, time, and response type. Psychonomic Bulletin and Review, 2015, 22, 1299-1307.	2.8	123
54	Similar frequency of the McGurk effect in large samples of native Mandarin Chinese and American English speakers. Experimental Brain Research, 2015, 233, 2581-2586.	1.5	33

#	Article	IF	CITATIONS
55	Electrocorticography Reveals Enhanced Visual Cortex Responses to Visual Speech. Cerebral Cortex, 2015, 25, 4103-4110.	2.9	19
56	Social Perception in Autism Spectrum Disorders: Impaired Category Selectivity for Dynamic but not Static Images in Ventral Temporal Cortex. Cerebral Cortex, 2014, 24, 37-48.	2.9	46
57	Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy. Hearing Research, 2014, 309, 84-93.	2.0	136
58	Is a single â€~hub', with lots of spokes, an accurate description of the neural architecture of action semantics?. Physics of Life Reviews, 2014, 11, 261-262.	2.8	23
59	Greater BOLD Variability in Older Compared with Younger Adults during Audiovisual Speech Perception. PLoS ONE, 2014, 9, e111121.	2.5	23
60	A Neural Link Between Feeling and Hearing. Cerebral Cortex, 2013, 23, 1724-1730.	2.9	58
61	Causal inference of asynchronous audiovisual speech. Frontiers in Psychology, 2013, 4, 798.	2.1	77
62	A neural basis for interindividual differences in the McGurk effect, a multisensory speech illusion. NeuroImage, 2012, 59, 781-787.	4.2	250
63	FMRI group analysis combining effect estimates and their variances. NeuroImage, 2012, 60, 747-765.	4.2	149
64	Multisensory speech perception without the left superior temporal sulcus. NeuroImage, 2012, 62, 1825-1832.	4.2	43
65	Electrocorticography links human temporoparietal junction to visual perception. Nature Neuroscience, 2012, 15, 957-959.	14.8	58
66	The Developmental Trajectory of Brain-Scalp Distance from Birth through Childhood: Implications for Functional Neuroimaging. PLoS ONE, 2011, 6, e24981.	2.5	89
67	Neural Correlates of Interindividual Differences in Children's Audiovisual Speech Perception. Journal of Neuroscience, 2011, 31, 13963-13971.	3.6	68
68	Dynamic Changes in Superior Temporal Sulcus Connectivity during Perception of Noisy Audiovisual Speech. Journal of Neuroscience, 2011, 31, 1704-1714.	3.6	153
69	TMS of posterior parietal cortex disrupts visual tactile multisensory integration. European Journal of Neuroscience, 2010, 31, 1783-1790.	2.6	84
70	Neural substrates of reliability-weighted visual-tactile multisensory integration. Frontiers in Systems Neuroscience, 2010, 4, 25.	2.5	45
71	fMRI-Guided Transcranial Magnetic Stimulation Reveals That the Superior Temporal Sulcus Is a Cortical Locus of the McGurk Effect. Journal of Neuroscience, 2010, 30, 2414-2417.	3.6	209
72	Neuroimaging with near-infrared spectroscopy demonstrates speech-evoked activity in the auditory cortex of deaf children following cochlear implantation. Hearing Research, 2010, 270, 39-47.	2.0	95

#	Article	IF	CITATIONS
73	Temporal lobe white matter asymmetry and language laterality in epilepsy patients. Neurolmage, 2010, 49, 2033-2044.	4.2	65
74	Surface Area Accounts for the Relation of Gray Matter Volume to Reading-Related Skills and History of Dyslexia. Cerebral Cortex, 2010, 20, 2625-2635.	2.9	78
75	Relationships between essential cortical language sites and subcortical pathways. Journal of Neurosurgery, 2009, 111, 755-766.	1.6	48
76	Distributed representation of single touches in somatosensory and visual cortex. Human Brain Mapping, 2009, 30, 3163-3171.	3.6	42
77	Sound enhances touch perception. Experimental Brain Research, 2009, 195, 135-143.	1.5	68
78	Perceiving electrical stimulation of identified human visual areas. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5389-5393.	7.1	102
79	Receptive Language Organization in High-Functioning Autism. Journal of Child Neurology, 2009, 24, 231-236.	1.4	6
80	A new method for improving functional-to-structural MRI alignment using local Pearson correlation. NeuroImage, 2009, 44, 839-848.	4.2	368
81	Computer-controlled electrical stimulation for quantitative mapping of human cortical function. Journal of Neurosurgery, 2009, 110, 1300-1303.	1.6	10
82	Perception Matches Selectivity in the Human Anterior Color Center. Current Biology, 2008, 18, 216-220.	3.9	82
83	Touch, sound and vision in human superior temporal sulcus. NeuroImage, 2008, 41, 1011-1020.	4.2	178
84	Neural Substrates of Sound–Touch Synesthesia after a Thalamic Lesion. Journal of Neuroscience, 2008, 28, 13696-13702.	3.6	81
85	Human MST But Not MT Responds to Tactile Stimulation. Journal of Neuroscience, 2007, 27, 8261-8267.	3.6	107
86	Grounding Object Concepts in Perception and Action: Evidence from FMRI Studies of Tools. Cortex, 2007, 43, 461-468.	2.4	139
87	Feeling sounds after a thalamic lesion. Annals of Neurology, 2007, 62, 433-441.	5.3	84
88	A common neural substrate for perceiving and knowing about color. Neuropsychologia, 2007, 45, 2802-2810.	1.6	395
89	Simplified intersubject averaging on the cortical surface using SUMA. Human Brain Mapping, 2006, 27, 14-27.	3.6	195
90	Dissociation of face-selective cortical responses by attention. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1065-1070.	7.1	116

#	Article	IF	CITATIONS
91	Statistical Criteria in fMRI Studies of Multisensory Integration. Neuroinformatics, 2005, 3, 093-114.	2.8	201
92	See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex. Current Opinion in Neurobiology, 2005, 15, 145-153.	4.2	343
93	Functional imaging of human crossmodal identification and object recognition. Experimental Brain Research, 2005, 166, 559-571.	1.5	330
94	Automatic Priming of Semantically Related Words Reduces Activity in the Fusiform Gyrus. Journal of Cognitive Neuroscience, 2005, 17, 1871-1885.	2.3	159
95	Tactile form and location processing in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12601-12605.	7.1	129
96	Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nature Neuroscience, 2004, 7, 1190-1192.	14.8	478
97	Integration of Auditory and Visual Information about Objects in Superior Temporal Sulcus. Neuron, 2004, 41, 809-823.	8.1	636
98	Detection of eye movements from fMRI data. Magnetic Resonance in Medicine, 2003, 49, 376-380.	3.0	41
99	fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable Objects. Journal of Cognitive Neuroscience, 2003, 15, 991-1001.	2.3	410
100	Neural Basis of Visually Guided Head Movements Studied With fMRI. Journal of Neurophysiology, 2003, 89, 2516-2527.	1.8	73
101	Parallel Visual Motion Processing Streams for Manipulable Objects and Human Movements. Neuron, 2002, 34, 149-159.	8.1	473
102	Cortical responses to visual motion: complex human and tool motion compared with simple radial gratings. Neurolmage, 2001, 13, 860.	4.2	1
103	A Parametric fMRI Study of Overt and Covert Shifts of Visuospatial Attention. NeuroImage, 2001, 14, 310-321.	4.2	324
104	A functional MRI case study of acquired cerebral dyschromatopsia. Neuropsychologia, 2000, 38, 1170-1179.	1.6	40
105	An fMRI Version of the Farnsworth-Munsell 100-Hue Test Reveals Multiple Color-selective Areas in Human Ventral Occipitotemporal Cortex. Cerebral Cortex, 1999, 9, 257-263.	2.9	189
106	Graded Effects of Spatial and Featural Attention on Human Area MT and Associated Motion Processing Areas. Journal of Neurophysiology, 1997, 78, 516-520.	1.8	238