
Di Zeugolis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6032126/publications.pdf Version: 2024-02-01

DI ZEUCOUS

#	Article	IF	CITATIONS
1	Dual drug delivery collagen vehicles for modulation of skin fibrosis in vitro. Biomedical Materials (Bristol), 2022, 17, 025017.	3.3	9
2	Allogeneic Serum and Macromolecular Crowding Maintain Native Equine Tenocyte Function in Culture. Cells, 2022, 11, 1562.	4.1	3
3	Macromolecular crowding in the development of a three-dimensional organotypic human breast cancer model. Biomaterials, 2022, 287, 121642.	11.4	3
4	Macromolecular crowding transforms regenerative medicine by enabling the accelerated development of functional and truly three-dimensional cell assembled micro tissues. Biomaterials, 2022, 287, 121674.	11.4	6
5	Development and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation rate. Acta Biomaterialia, 2021, 121, 303-315.	8.3	12
6	Electric field stimulation for tissue engineering applications. BMC Biomedical Engineering, 2021, 3, 1.	2.6	49
7	The influence of animal species, gender and tissue on the structural, biophysical, biochemical and biological properties of collagen sponges. Journal of Materials Science: Materials in Medicine, 2021, 32, 12.	3.6	25
8	Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. Npj Regenerative Medicine, 2021, 6, 18.	5.2	72
9	Growth factor and macromolecular crowding supplementation in human tenocyte culture. Biomaterials and Biosystems, 2021, 1, 100009.	2.2	12
10	Decellularized xenografts in regenerative medicine: From processing to clinical application. Xenotransplantation, 2021, 28, e12683.	2.8	22
11	Hyaluronic Acid as Macromolecular Crowder in Equine Adipose-Derived Stem Cell Cultures. Cells, 2021, 10, 859.	4.1	11
12	Bioinspired in vitro microenvironments to control cell fate: focus on macromolecular crowding. American Journal of Physiology - Cell Physiology, 2021, 320, C842-C849.	4.6	15
13	In vitro optimization of macromolecular crowding conditions in human umbilical cord derived mesenchymal stromal cell culture. Cytotherapy, 2021, 23, S53.	0.7	Ο
14	In the quest of the optimal tissue source (porcine male and female articular, tracheal and auricular) Tj ETQq0 0 C Advances, 2021, 1, 100002.) rgBT /Ov 3.8	erlock 10 Tf 5 7
15	The Influence of Bloom Index, Endotoxin Levels and Polyethylene Glycol Succinimidyl Glutarate Crosslinking on the Physicochemical and Biological Properties of Gelatin Biomaterials. Biomolecules, 2021, 11, 1003.	4.0	6
16	lt is time to crowd your cell culture media – Physicochemical considerations with biological consequences. Biomaterials, 2021, 275, 120943.	11.4	33
17	A combined physicochemical approach towards human tenocyte phenotype maintenance. Materials Today Bio, 2021, 12, 100130.	5.5	7
18	In the quest of the optimal chondrichthyan for the development of collagen sponges for articular cartilage. Journal of Science: Advanced Materials and Devices, 2021, 6, 390-398.	3.1	4

#	Article	IF	CITATIONS
19	Transforming eukaryotic cell culture with macromolecular crowding. Trends in Biochemical Sciences, 2021, 46, 805-811.	7.5	24
20	Editorial: Fibrous Assemblies: From Synthesis and Nanostructure Characterization to Materials Development and Application. Frontiers in Bioengineering and Biotechnology, 2021, 9, 778094.	4.1	0
21	Modulation of stem cell response using biodegradable polyester films with different stiffness. Biomedical Engineering Advances, 2021, 2, 100007.	3.8	4
22	Adapting the Scar-in-a-Jar to Skin Fibrosis and Screening Traditional and Contemporary Anti-Fibrotic Therapies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 756399.	4.1	6
23	Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. Biomaterials and Biosystems, 2021, 4, 100030.	2.2	17
24	The synergistic effect of low oxygen tension and macromolecular crowding in the development of extracellular matrix-rich tendon equivalents. Biofabrication, 2020, 12, 025018.	7.1	28
25	The effect of aligned electrospun fibers and macromolecular crowding in tenocyte culture. Methods in Cell Biology, 2020, 157, 225-247.	1.1	8
26	Automation, Monitoring, and Standardization of Cell Product Manufacturing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 811.	4.1	47
27	Seaweed polysaccharides as macromolecular crowding agents. International Journal of Biological Macromolecules, 2020, 164, 434-446.	7.5	35
28	Extracellular matrix-based biomaterials as adipose-derived stem cell delivery vehicles in wound healing: a comparative study between a collagen scaffold and two xenografts. Stem Cell Research and Therapy, 2020, 11, 510.	5.5	18
29	Advanced Materials and Cellular Systems for Disease Diagnosis and Tissue Regeneration. Advanced Functional Materials, 2020, 30, 2005693.	14.9	0
30	Molecular Crowding – (in Cell Culture). , 2020, , 483-509.		2
31	The Few Who Made It: Commercially and Clinically Successful Innovative Bone Grafts. Frontiers in Bioengineering and Biotechnology, 2020, 8, 952.	4.1	47
32	Porcine mesothelium matrix as a biomaterial for wound healing applications. Materials Today Bio, 2020, 7, 100057.	5.5	21
33	Influence of the Thermodynamic and Kinetic Control of Selfâ€Assembly on the Microstructure Evolution of Silkâ€Elastinâ€Like Recombinamer Hydrogels. Small, 2020, 16, e2001244.	10.0	23
34	Electrospun Polymers in Cartilage Engineering—State of Play. Frontiers in Bioengineering and Biotechnology, 2020, 8, 77.	4.1	26
35	Cellâ€Derived Extracellular Matrixâ€Rich Biomimetic Substrate Supports Podocyte Proliferation, Differentiation, and Maintenance of Native Phenotype. Advanced Functional Materials, 2020, 30, 1908752.	14.9	54
36	Engineering the Tenogenic Niche In Vitro withÂMicroenvironmental Tools. Advanced Therapeutics, 2020, 3, 1900072.	3.2	7

#	Article	IF	CITATIONS
37	Theranostic drug test incorporating the boneâ€marrow microenvironment can predict the clinical response of acute myeloid leukaemia to chemotherapy. British Journal of Haematology, 2020, 189, e254-e258.	2.5	4
38	Formation of Corneal Stromal-Like Assemblies Using Human Corneal Fibroblasts and Macromolecular Crowding. Methods in Molecular Biology, 2020, 2145, 119-141.	0.9	2
39	Macromolecular crowding enhances and accelerates extracellular matrix deposition in human umbilical cord derived mesenchymal stem cell cultures. Cytotherapy, 2020, 22, S175.	0.7	0
40	Editorial: Highlights From TERMIS EU 2019. Frontiers in Bioengineering and Biotechnology, 2020, 8, 604661.	4.1	0
41	Editorial: Highlights From TERMIS EU 2019. Frontiers in Bioengineering and Biotechnology, 2020, 8, 604661.	4.1	0
42	Macromolecular crowding as a means to assess the effectiveness of chondrogenic media. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 217-231.	2.7	9
43	Decellularised porcine peritoneum as a tendon protector sheet. Biomedical Materials (Bristol), 2019, 14, 044102.	3.3	5
44	Designing Microenvironments for Optimal Outcomes in Tissue Engineering and Regenerative Medicine: From Biopolymers to Culturing Conditions. , 2019, , 119-119.		1
45	In vitro and preclinical characterisation of compressed, macro-porous and collagen coated poly- ε -caprolactone electro-spun scaffolds. Biomedical Materials (Bristol), 2019, 14, 055007.	3.3	3
46	Hydrolyzed Collagen—Sources and Applications. Molecules, 2019, 24, 4031.	3.8	250
47	Multifactorial bottomâ€up bioengineering approaches for the development of living tissue substitutes. FASEB Journal, 2019, 33, 5741-5754.	0.5	26
48	Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Advanced Drug Delivery Reviews, 2019, 146, 126-154.	13.7	13
49	Scaffolds for tendon tissue engineering. , 2019, , 259-298.		1
50	Battling adhesions: from understanding to prevention. BMC Biomedical Engineering, 2019, 1, 5.	2.6	49
51	Carrageenan enhances chondrogenesis and osteogenesis in human bone marrow stem cell culture. , 2019, 37, 310-332.		35
52	BMC Biomedical Engineering: a home for all biomedical engineering research. BMC Biomedical Engineering, 2019, 1, 1.	2.6	8
53	Preparation and Characterization of Tissue Surrogates Rich in Extracellular Matrix Using the Principles of Macromolecular Crowding. Methods in Molecular Biology, 2019, 1952, 245-259.	0.9	7
54	Polydispersity and negative charge are key modulators of extracellular matrix deposition under macromolecular crowding conditions. Acta Biomaterialia, 2019, 88, 197-210.	8.3	47

#	Article	IF	CITATIONS
55	Production and Characterization of Chemically Cross-Linked Collagen Scaffolds. Methods in Molecular Biology, 2019, 1944, 23-38.	0.9	6
56	Editorial: Biofunctional biomaterials and cellular systems for diagnostic and therapeutic purposes. Biomedical Materials (Bristol), 2019, 14, 020201.	3.3	1
57	Wound healing and fibrosis – State of play. Advanced Drug Delivery Reviews, 2019, 146, 1-2.	13.7	4
58	Translational Research Symposium—collaborative efforts as driving forces of healthcare innovation. Journal of Materials Science: Materials in Medicine, 2019, 30, 133.	3.6	1
59	Hypoxia Preconditioning of Bone Marrow Mesenchymal Stem Cells Before Implantation in Orthopaedics. Journal of the American Academy of Orthopaedic Surgeons, The, 2019, 27, e1040-e1042.	2.5	5
60	Current and upcoming therapies to modulate skin scarring and fibrosis. Advanced Drug Delivery Reviews, 2019, 146, 37-59.	13.7	114
61	Development macro-porous electro-spun meshes with clinically relevant mechanical properties—a technical note. Biomedical Materials (Bristol), 2019, 14, 024103.	3.3	6
62	Chasing Chimeras – The elusive stable chondrogenic phenotype. Biomaterials, 2019, 192, 199-225.	11.4	32
63	Identification of topographical architectures supporting the phenotype of rat tenocytes. Acta Biomaterialia, 2019, 83, 277-290.	8.3	43
64	The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Advanced Materials, 2019, 31, e1801651.	21.0	595
65	Concept Design of a New Portable Medical Device for Lymphedema Monitoring: A EIT Health ClinMed Summer School Project. , 2019, , .		0
66	Empowering Translation of New Ideas - A EIT Health ClinMed Summer School Overview. , 2019, , .		0
67	Relevance of bioreactors and whole tissue cultures for the translation of new therapies to humans. Journal of Orthopaedic Research, 2018, 36, 10-21.	2.3	45
68	Advancements and Challenges in Multidomain Multicargo Delivery Vehicles. Advanced Materials, 2018, 30, e1704324.	21.0	38
69	An experimental toolbox for characterization of mammalian collagen type I in biological specimens. Nature Protocols, 2018, 13, 507-529.	12.0	78
70	Foreword to special issue on two-dimensional biomaterials in regenerative medicine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2351-2353.	3.3	3
71	Environmental fate and effect of biodegradable electro-spun scaffolds (biomaterial)-a case study. Journal of Materials Science: Materials in Medicine, 2018, 29, 51.	3.6	7
72	Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 6-18.	2.7	42

#	Article	IF	CITATIONS
73	Molecular Crowding – (in Cell Culture). , 2018, , 1-27.		1
74	Influence of Cross-Linking Method and Disinfection/Sterilization Treatment on the Structural, Biophysical, Biochemical, and Biological Properties of Collagen-Based Devices. ACS Biomaterials Science and Engineering, 2018, 4, 2739-2747.	5.2	12
75	Joint academic and industrial efforts towards innovative and efficient solutions for clinical needs. Journal of Materials Science: Materials in Medicine, 2018, 29, 129.	3.6	9
76	State of art and limitations in genetic engineering to induce stable chondrogenic phenotype. Biotechnology Advances, 2018, 36, 1855-1869.	11.7	15
77	Wound healing and scar wars. Advanced Drug Delivery Reviews, 2018, 129, 1-3.	13.7	17
78	In Vitro Enzymatic Degradation of Tissue Grafts and Collagen Biomaterials by Matrix Metalloproteinases: Improving the Collagenase Assay. ACS Biomaterials Science and Engineering, 2017, 3, 1922-1932.	5.2	43
79	Collagen Cross-Linking: Biophysical, Biochemical, and Biological Response Analysis. Tissue Engineering - Part A, 2017, 23, 1064-1077.	3.1	64
80	Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Science, 2017, 132, 90-98.	5.5	85
81	Battling bacterial infection with hexamethylene diisocyanate cross-linked and Cefaclor-loaded collagen scaffolds. Biomedical Materials (Bristol), 2017, 12, 035013.	3.3	19
82	Biophysics Rules the Cell Culture but Has Yet to Reach the Clinic. Journal of the American Academy of Orthopaedic Surgeons, The, 2017, 25, e144-e147.	2.5	4
83	Collagen Quantification in Tissue Specimens. Methods in Molecular Biology, 2017, 1627, 341-350.	0.9	19
84	Non-destructive determination of collagen fibril width in extruded collagen fibres by piezoresponse force microscopy. Biomedical Physics and Engineering Express, 2017, 3, 055004.	1.2	4
85	Acetic acid and pepsin result in high yield, high purity and low macrophage response collagen for biomedical applications. Biomedical Materials (Bristol), 2017, 12, 065009.	3.3	45
86	Biomimetic Bioactive Biomaterials: The Next Generation of Implantable Devices. ACS Biomaterials Science and Engineering, 2017, 3, 1172-1174.	5.2	18
87	6.20 Skin Tissue Engineering â~†. , 2017, , 334-382.		3
88	Influence of Nonsulfated Polysaccharides on the Properties of Electrospun Poly(lactic- <i>co</i> -glycolic acid) Fibers. ACS Biomaterials Science and Engineering, 2017, 3, 1304-1312.	5.2	10
89	2.21 Xenogenic Tissues and Biomaterials for the Skeletal System \hat{a} , 2017, , 471-504.		0

90 2.15 Collagen: Materials Analysis and Implant Uses â~†. , 2017, , 332-350.

3

#	Article	IF	CITATIONS
91	Preferential tendon stem cell response to growth factor supplementation. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 783-798.	2.7	59
92	Scaffold and scaffoldâ€free selfâ€assembled systems in regenerative medicine. Biotechnology and Bioengineering, 2016, 113, 1155-1163.	3.3	34
93	The influence of poly(ethylene glycol) ether tetrasuccinimidyl glutarate on the structural, physical, and biological properties of collagen fibers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 914-922.	3.4	25
94	Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture. Scientific Reports, 2016, 6, 20922.	3.3	30
95	2D imprinted substrates and 3D electrospun scaffolds revolutionize biomedicine. Nanomedicine, 2016, 11, 989-992.	3.3	13
96	Twenty-five years of nano-bio-materials: have we revolutionized healthcare?. Nanomedicine, 2016, 11, 985-987.	3.3	23
97	Influence of porosity and pore shape on structural, mechanical and biological properties of poly <i>ïµ</i> -caprolactone electro-spun fibrous scaffolds. Nanomedicine, 2016, 11, 1031-1040.	3.3	38
98	Low, but not too low, oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human dermal fibroblast culture. Acta Biomaterialia, 2016, 44, 221-231.	8.3	48
99	Materials Science in Ireland - Current Developments and Future Aspirations. Advanced Materials, 2016, 28, 5346-5348.	21.0	0
100	Innovating in the medical device industry – challenges & opportunities ESB 2015 translational research symposium. Journal of Materials Science: Materials in Medicine, 2016, 27, 144.	3.6	19
101	Engineering in vitro complex pathophysiologies for drug discovery purposes. Drug Discovery Today, 2016, 21, 1341-1344.	6.4	5
102	Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis. Scientific Reports, 2016, 6, 30746.	3.3	66
103	Progress in Corneal Stromal Repair: From Tissue Grafts and Biomaterials to Modular Supramolecular Tissueâ€Like Assemblies. Advanced Materials, 2016, 28, 5381-5399.	21.0	48
104	Recreating complex pathophysiologies in vitro with extracellular matrix surrogates for anticancer therapeutics screening. Drug Discovery Today, 2016, 21, 1521-1531.	6.4	28
105	Structured substrates and delivery vehicles: trending now in biomedicine. Nanomedicine, 2016, 11, 1489-1493.	3.3	5
106	Data on in vitro and in vivo cell orientation on substrates with different topographies. Data in Brief, 2015, 5, 379-382.	1.0	2
107	Flexor Tenorraphy. Plastic and Reconstructive Surgery, 2015, 136, 23-24.	1.4	1
108	Harnessing Hierarchical Nano―and Microâ€Fabrication Technologies for Musculoskeletal Tissue Engineering. Advanced Healthcare Materials, 2015, 4, 2488-2499.	7.6	59

#	Article	IF	CITATIONS
109	Engineering Anisotropic 2D and 3D Structures for Tendon Repair and Regeneration. , 2015, , 225-242.		4
110	Regenerative Medicine in the 21st Century: Advances in Engineering, Chemistry, Biology and Medicine Revolutionize Healthcare. Advanced Healthcare Materials, 2015, 4, 2324-2325.	7.6	2
111	Accelerated Development of Supramolecular Corneal Stromal-Like Assemblies from Corneal Fibroblasts in the Presence of Macromolecular Crowders. Tissue Engineering - Part C: Methods, 2015, 21, 660-670.	2.1	58
112	Progress in cell-based therapies for tendon repair. Advanced Drug Delivery Reviews, 2015, 84, 240-256.	13.7	152
113	Scaffolds, cells, biologics: At the crossroads of musculoskeletal repair. Advanced Drug Delivery Reviews, 2015, 84, v-vi.	13.7	3
114	To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices. Tissue Engineering - Part B: Reviews, 2015, 21, 298-313.	4.8	205
115	Clycosaminoglycans in Tendon Physiology, Pathophysiology, and Therapy. Bioconjugate Chemistry, 2015, 26, 1237-1251.	3.6	44
116	Biofunctional Biomaterials – The Next Frontier. Bioconjugate Chemistry, 2015, 26, 1157-1157.	3.6	10
117	Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies. Scientific Reports, 2015, 5, 8729.	3.3	94
118	An academic, clinical and industrial update on electrospun, additive manufactured and imprinted medical devices. Expert Review of Medical Devices, 2015, 12, 601-612.	2.8	33
119	The influence of anisotropic nano- to micro-topography on <i>in vitro</i> and <i>in vivo</i> osteogenesis. Nanomedicine, 2015, 10, 693-711.	3.3	52
120	Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis. Acta Biomaterialia, 2015, 27, 3-12.	8.3	66
121	Effects of Polydopamine Functionalization on Boron Nitride Nanotube Dispersion and Cytocompatibility. Bioconjugate Chemistry, 2015, 26, 2025-2037.	3.6	40
122	The past, present and future in scaffold-based tendon treatments. Advanced Drug Delivery Reviews, 2015, 84, 257-277.	13.7	171
123	Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Advanced Drug Delivery Reviews, 2015, 84, 1-29.	13.7	382
124	The Multifaceted Potential of Electro-spinning in Regenerative Medicine. Pharmaceutical Nanotechnology, 2014, 2, 23-34.	1.5	29
125	A Barbed Suture Repair For Flexor Tendons. Plastic and Reconstructive Surgery - Global Open, 2014, 2, e237.	0.6	15
126	<i>In vitro</i> evaluation of Ficoll-enriched and genipin-stabilised collagen scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 233-241.	2.7	27

#	Article	IF	CITATIONS
127	Macromolecular Crowding Meets Tissue Engineering by Selfâ€Assembly: A Paradigm Shift in Regenerative Medicine. Advanced Materials, 2014, 26, 3024-3034.	21.0	147
128	Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models. Stem Cell Research and Therapy, 2014, 5, 38.	5.5	61
129	Surface hierarchical porosity in poly (É›-caprolactone) membranes with potential applications in tissue engineering prepared by foaming in supercritical carbon dioxide. Journal of Supercritical Fluids, 2014, 95, 273-284.	3.2	18
130	A shape-controlled tuneable microgel platform to modulate angiogenic paracrine responses in stem cells. Biomaterials, 2014, 35, 8757-8766.	11.4	79
131	The biophysical, biochemical, and biological toolbox for tenogenic phenotype maintenance in vitro. Trends in Biotechnology, 2014, 32, 474-482.	9.3	73
132	Influence of sterilisation methods on collagen-based devices stability and properties. Expert Review of Medical Devices, 2014, 11, 305-314.	2.8	54
133	Collagen: Finding a Solution for the Source. Tissue Engineering - Part A, 2013, 19, 1491-1494.	3.1	100
134	Engineering in vitro microenvironments for cell based therapies and drug discovery. Drug Discovery Today, 2013, 18, 1099-1108.	6.4	69
135	A Qualitative Assessment of EU Energy Policy Interactions. Energy Sources, Part B: Economics, Planning and Policy, 2012, 7, 177-187.	3.4	22
136	Electromechanical properties of dried tendon and isoelectrically focused collagen hydrogels. Acta Biomaterialia, 2012, 8, 3073-3079.	8.3	41
137	A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. Journal of the Royal Society Interface, 2012, 9, 202-221.	3.4	470
138	The effect of intraluminal contact mediated guidance signals on axonal mismatch during peripheral nerve repair. Biomaterials, 2012, 33, 6660-6671.	11.4	65
139	Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions. Journal of Materials Science: Materials in Medicine, 2012, 23, 137-148.	3.6	38
140	The 24th European Conference on Biomaterials: Facts & Figures. Journal of Materials Science: Materials in Medicine, 2012, 23, 3-7.	3.6	0
141	Nano-textured self-assembled aligned collagen hydrogels promote directional neurite guidance and overcome inhibition by myelin associated glycoprotein. Soft Matter, 2011, 7, 2770.	2.7	72
142	Skin Tissue Engineering. , 2011, , 467-499.		15
143	Collagen: Materials Analysis and Implant Uses. , 2011, , 261-278.		19
144	Xenogenic Tissues and Biomaterials for the Skeletal System. , 2011, , 387-404.		3

Xenogenic Tissues and Biomaterials for the Skeletal System. , 2011, , 387-404. 144

#	Article	IF	CITATIONS
145	Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials. Acta Biomaterialia, 2011, 7, 3237-3247.	8.3	160
146	An injectable vehicle for nucleus pulposus cell-based therapy. Biomaterials, 2011, 32, 2862-2870.	11.4	203
147	Spinal cord injury in vitro: modelling axon growth inhibition. Drug Discovery Today, 2010, 15, 436-443.	6.4	26
148	The influence of a natural cross-linking agent (Myrica rubra) on the properties of extruded collagen fibres for tissue engineering applications. Materials Science and Engineering C, 2010, 30, 190-195.	7.3	39
149	Essential modification of the Sircol Collagen Assay for the accurate quantification of collagen content in complex protein solutions. Acta Biomaterialia, 2010, 6, 3146-3151.	8.3	59
150	The physiological relevance of wet <i>versus</i> dry differential scanning calorimetry for biomaterial evaluation: a technical note. Polymer International, 2010, 59, 1403-1407.	3.1	37
151	Amine Functionalization of Collagen Matrices with Multifunctional Polyethylene Glycol Systems. Biomacromolecules, 2010, 11, 3093-3101.	5.4	58
152	Crossâ€linking of extruded collagen fibers—A biomimetic threeâ€dimensional scaffold for tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2009, 89A, 895-908.	4.0	186
153	Extruded Collagen Fibres for Tissue-Engineering Applications: Influence of Collagen Concentration and NaCl Amount. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 219-234.	3.5	28
154	Post-self-assembly experimentation on extruded collagen fibres for tissue engineering applications. Acta Biomaterialia, 2008, 4, 1646-1656.	8.3	58
155	Engineering extruded collagen fibers for biomedical applications. Journal of Applied Polymer Science, 2008, 108, 2886-2894.	2.6	55
156	Electro-spinning of pure collagen nano-fibres – Just an expensive way to make gelatin?. Biomaterials, 2008, 29, 2293-2305.	11.4	538
157	Collagen solubility testing, a quality assurance step for reproducible electro-spun nano-fibre fabrication. A technical note. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1307-1317.	3.5	44
158	REFORMED COLLAGEN FIBRES. , 2006, , 29-36.		0
159	British Society for Matrix Biology Autumn Meeting †Joint with the UK Tissue & Cell Engineering Society, University of Bristol, UK. International Journal of Experimental Pathology, 2005, 86, A1-A56.	1.3	0
160	Macromolecular Crowding: The Next Frontier in Tissue Engineering. Advances in Science and Technology, 0, , .	0.2	2
161	Design and Characterisation of Cytocompatible Polyester Substrates with Tunable Mechanical Properties and Degradation Rate. SSRN Electronic Journal, 0, , .	0.4	0