Sylvain Aubry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6031592/publications.pdf

Version: 2024-02-01

414414 304743 2,724 32 22 32 h-index citations g-index papers 37 37 37 3008 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bringing access and benefit sharing into the digital age. Plants People Planet, 2022, 4, 5-12.	3.3	11
2	Evolution of chlorophyll degradation is associated with plant transition to land. Plant Journal, 2022, 109, 1473-1488.	5.7	10
3	Chapter 10. Omics-based Detection, Identification and Quantification of GM Food and Feed: Current Challenges and Perspectives. Food Chemistry, Function and Analysis, 2021, , 257-270.	0.2	1
4	An evergreen mind and a heart for the colors of fall. Journal of Experimental Botany, 2021, 72, 4625-4633.	4.8	4
5	De novo transcriptome assembly data of the marine bioluminescent dinoflagellate Pyrocystis lunula. Data in Brief, 2021, 37, 107254.	1.0	3
6	Pheophorbide <i>a</i> May Regulate Jasmonate Signaling during Dark-Induced Senescence. Plant Physiology, 2020, 182, 776-791.	4.8	32
7	The Future of Digital Sequence Information for Plant Genetic Resources for Food and Agriculture. Frontiers in Plant Science, 2019, 10, 1046.	3.6	38
8	Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway. IScience, 2019, 17, 144-154.	4.1	24
9	Contribution of Untargeted Metabolomics for Future Assessment of Biotech Crops. Trends in Plant Science, 2018, 23, 1047-1056.	8.8	45
10	Circadian oscillations of cytosolic free calcium regulate the Arabidopsis circadian clock. Nature Plants, 2018, 4, 690-698.	9.3	65
11	Post-transcriptional regulation of photosynthetic genes is a key driver of C ₄ leaf ontogeny. Journal of Experimental Botany, 2017, 68, 137-146.	4.8	16
12	Non-specific activities of the major herbicide-resistance gene BAR. Nature Plants, 2017, 3, 937-945.	9.3	33
13	A Specific Transcriptome Signature for Guard Cells from the C ₄ Plant <i>Gynandropsis gynandra</i> . Plant Physiology, 2016, 170, 1345-1357.	4.8	29
14	Genetically modified crops in Switzerland: implications for agrosystem sustainability evidenced by multi-criteria model. Agronomy for Sustainable Development, 2016, 36, 1.	5. 3	7
15	A Role for TIC55 as a Hydroxylase of Phyllobilins, the Products of Chlorophyll Breakdown during Plant Senescence. Plant Cell, 2016, 28, 2510-2527.	6.6	75
16	An Untranslated <i>cis</i> -Element Regulates the Accumulation of Multiple C ₄ Enzymes in <i>Gynandropsis gynandra</i> Mesophyll Cells. Plant Cell, 2016, 28, 454-465.	6.6	73
17	Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment. Nature Communications, 2015, 6, 6659.	12.8	95
18	Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of Trans-Factors in Two Independent Origins of C4 Photosynthesis. PLoS Genetics, 2014, 10, e1004365.	3.5	165

#	Article	IF	CITATIONS
19	Transcript residency on ribosomes reveals a key role for the <i><scp>A</scp>rabidopsis thaliana</i> bundle sheath in sulfur and glucosinolate metabolism. Plant Journal, 2014, 78, 659-673.	5.7	83
20	Endoreduplication is not involved in bundle-sheath formation in the C4 species Cleome gynandra. Journal of Experimental Botany, 2014, 65, 3557-3566.	4.8	7
21	Evolution of GOLDEN2-LIKE gene function in C3 and C4 plants. Planta, 2013, 237, 481-495.	3.2	98
22	MES16, a Member of the Methylesterase Protein Family, Specifically Demethylates Fluorescent Chlorophyll Catabolites during Chlorophyll Breakdown in Arabidopsis. Plant Physiology, 2012, 158, 628-641.	4.8	83
23	Molecular evolution of genes recruited into C4 photosynthesis. Trends in Plant Science, 2012, 17, 213-220.	8.8	73
24	The pyruvate, orthophosphate dikinase regulatory proteins of Arabidopsis are both bifunctional and interact with the catalytic and nucleotideâ€binding domains of pyruvate, orthophosphate dikinase. Plant Journal, 2011, 68, 1070-1080.	5 . 7	20
25	The role of proteins in C3 plants prior to their recruitment into the C4 pathway. Journal of Experimental Botany, 2011, 62, 3049-3059.	4.8	168
26	Accumulation of chlorophyll catabolites photosensitizes the hypersensitive response elicited by <i>Pseudomonas syringae</i> in Arabidopsis. New Phytologist, 2010, 188, 161-174.	7.3	91
27	Pheophytin Pheophorbide Hydrolase (Pheophytinase) Is Involved in Chlorophyll Breakdown during Leaf Senescence in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 767-785.	6.6	513
28	Stay-green protein, defective in Mendel's green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Molecular Biology, 2008, 67, 243-256.	3.9	96
29	Cross-Species Identification of Mendel's I Locus. Science, 2007, 315, 73-73.	12.6	168
30	In Vivo Participation of Red Chlorophyll Catabolite Reductase in Chlorophyll Breakdown. Plant Cell, 2007, 19, 369-387.	6.6	215
31	From crop to model to crop: identifying the genetic basis of the staygreen mutation in the Lolium / Festuca forage and amenity grasses. New Phytologist, 2006, 172, 592-597.	7.3	98
32	Chlorophyll Breakdown in Senescent Arabidopsis Leaves. Characterization of Chlorophyll Catabolites and of Chlorophyll Catabolic Enzymes Involved in the Degreening Reaction. Plant Physiology, 2005, 139, 52-63.	4.8	278