
Maria Francesca Cardone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6031300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Native Vineyard Non-Saccharomyces Yeasts Used for Biological Control of Botrytis cinerea in Stored Table Grape. Microorganisms, 2021, 9, 457.	3.6	11
2	Color Stabilization of Apulian Red Wines through the Sequential Inoculation of Starmerella bacillaris and Saccharomyces cerevisiae. Molecules, 2021, 26, 907.	3.8	5
3	Novel and emerging biotechnological crop protection approaches. Plant Biotechnology Journal, 2021, 19, 1495-1510.	8.3	26
4	Somatic Embryogenesis in Vitis for Genome Editing: Optimization of Protocols for Recalcitrant Genotypes. Horticulturae, 2021, 7, 511.	2.8	5
5	Gene expression signature induced by grape intake in healthy subjects reveals wide-spread beneficial effects on peripheral blood mononuclear cells. Journal of Functional Foods, 2020, 64, 103705.	3.4	7
6	Microarray data and pathway analyses of peripheral blood mononuclear cells from healthy subjects after a three weeks grape-rich diet. Data in Brief, 2020, 29, 105278.	1.0	5
7	FT-NIR Analysis of Intact Table Grape Berries to Understand Consumer Preference Driving Factors. Foods, 2020, 9, 98.	4.3	12
8	Unraveling the Deep Genetic Architecture for Seedlessness in Grapevine and the Development and Validation of a New Set of Markers for VviAGL11-Based Gene-Assisted Selection. Genes, 2020, 11, 151.	2.4	12
9	Transcriptomic and genomic structural variation analyses on grape cultivars reveal new insights into the genotype-dependent responses to water stress. Scientific Reports, 2019, 9, 2809.	3.3	17
10	SNP genotyping elucidates the genetic diversity of Magna Graecia grapevine germplasm and its historical origin and dissemination. BMC Plant Biology, 2019, 19, 7.	3.6	51
11	Study of the Influence of Different Yeast Strains on Red Wine Fermentation with NIR Spectroscopy and Principal Component Analysis. J, 2018, 1, 133-147.	0.9	4
12	The molecular characterization by SSRs reveals a new South Italian kinship and the origin of the cultivar Uva di Troia. SpringerPlus, 2016, 5, 1562.	1.2	7
13	Genomics technologies to study structural variations in the grapevine genome. BIO Web of Conferences, 2016, 7, 01016.	0.2	0
14	Interâ€varietal structural variation in grapevine genomes. Plant Journal, 2016, 88, 648-661.	5.7	45
15	Morphological Variability in Leaves and Molecular Characterization of Novel Table Grape Candidate Cultivars (Vitis vinifera L.). Molecular Biotechnology, 2014, 56, 557-570.	2.4	9
16	Evidences for an Alternative Genealogy of â€~Sangiovese'. Molecular Biotechnology, 2013, 53, 278-288.	2.4	20
17	Sangiovese and Its Offspring in Southern Italy. Molecular Biotechnology, 2013, 54, 581-589.	2.4	10
18	Validation Assay of p3_VvAGL11 Marker in a Wide Range of Genetic Background for Early Selection of Stenospermocarpy in Vitis vinifera L Molecular Biotechnology, 2013, 54, 1021-1030.	2.4	37

#	Article	IF	CITATIONS
19	Male infertility and copy number variants (CNVs) in the dog: a two-pronged approach using Computer Assisted Sperm Analysis (CASA) and Fluorescent In Situ Hybridization (FISH). BMC Genomics, 2013, 14, 921.	2.8	10
20	Evolutionary history of linked D4Z4 and Beta satellite clusters at the FSHD locus (4q35). Genomics, 2012, 100, 289-296.	2.9	5
21	Copy number variation of individual cattle genomes using next-generation sequencing. Genome Research, 2012, 22, 778-790.	5.5	259
22	Real-time PCR for the detection of precise transgene copy number in durum wheat. Cellular and Molecular Biology Letters, 2011, 16, 652-68.	7.0	26
23	Initial analysis of copy number variations in cattle selected for resistance or susceptibility to intestinal nematodes. Mammalian Genome, 2011, 22, 111-121.	2.2	46
24	Genomic characteristics of cattle copy number variations. BMC Genomics, 2011, 12, 127.	2.8	201
25	Genome-wide characterization of centromeric satellites from multiple mammalian genomes. Genome Research, 2011, 21, 137-145.	5.5	78
26	Analysis of copy number variations among diverse cattle breeds. Genome Research, 2010, 20, 693-703.	5.5	280
27	New Insights into Centromere Organization and Evolution from the White-Cheeked Gibbon and Marmoset. Molecular Biology and Evolution, 2009, 26, 1889-1900.	8.9	45
28	A satellite-like sequence, representing a "clone gap―in the human genome, was likely involved in the seeding of a novel centromere in macaque. Chromosoma, 2009, 118, 269-277.	2.2	9
29	A burst of segmental duplications in the genome of the African great ape ancestor. Nature, 2009, 457, 877-881.	27.8	222
30	Primate chromosome evolution: Ancestral karyotypes, marker order and neocentromeres. Chromosome Research, 2008, 16, 17-39.	2.2	117
31	Stably expressed d-genome-derived HMW glutenin subunit genes transformed into different durum wheat genotypes change dough mixing properties. Molecular Breeding, 2008, 22, 267-279.	2.1	31
32	Evolutionary toggling of the MAPT 17q21.31 inversion region. Nature Genetics, 2008, 40, 1076-1083.	21.4	176
33	Hominoid chromosomal rearrangements on 17q map to complex regions of segmental duplication. Genome Biology, 2008, 9, R28.	9.6	25
34	Evolutionary Formation of New Centromeres in Macaque. Science, 2007, 316, 243-246.	12.6	136
35	Evolutionary history of chromosome 11 featuring four distinct centromere repositioning events in Catarrhini. Genomics, 2007, 90, 35-43.	2.9	28
36	Characterization and evolution of the novel gene family FAM90A in primates originated by multiple duplication and rearrangement events. Human Molecular Genetics, 2007, 16, 2572-2582.	2.9	24

#	Article	IF	CITATIONS
37	Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nature Genetics, 2007, 39, 1361-1368.	21.4	192
38	Evolutionary genomic remodelling of the human 4q subtelomere (4q35.2). BMC Evolutionary Biology, 2007, 7, 39.	3.2	11
39	Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biology, 2006, 7, R91.	9.6	60
40	Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics, 2006, 87, 777-782.	2.9	100
41	The boundary of macaque rDNA is constituted by low-copy sequences conserved during evolution. Genomics, 2006, 88, 564-571.	2.9	6
42	A preliminary comparative analysis of primate segmental duplications shows elevated substitution rates and a great-ape expansion of intrachromosomal duplications. Genome Research, 2006, 16, 576-583.	5.5	82
43	Recurrent Sites for New Centromere Seeding. Genome Research, 2004, 14, 1696-1703.	5.5	135
44	Evolution of Beta Satellite DNA Sequences: Evidence for Duplication-Mediated Repeat Amplification and Spreading. Molecular Biology and Evolution, 2004, 21, 1792-1799.	8.9	22
45	Evolutionary History of Chromosome 20. Molecular Biology and Evolution, 2004, 22, 360-366.	8.9	21
46	Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster. Genome Biology, 2003, 4, R50.	9.6	107
47	Localization of a new highly repeated DNA sequence of Lemur catta (Lemuridae, Strepsirhini). Genome, 2002, 45, 973-976.	2.0	0
48	Analysis of chromosome conservation in Lemur catta studied by chromosome paints and BAC/PAC probes. Chromosoma, 2002, 111, 348-356.	2.2	26
49	Characterization of a highly repeated DNA sequence family in five species of the genus Eulemur. Gene, 2001, 275, 305-310.	2.2	9